Title:
|
A duality between algebras of basic logic and bounded representable $DRl$-monoids (English) |
Author:
|
Rachůnek, Jiří |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
126 |
Issue:
|
3 |
Year:
|
2001 |
Pages:
|
561-569 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
$BL$-algebras, introduced by P. Hájek, form an algebraic counterpart of the basic fuzzy logic. In the paper it is shown that $BL$-algebras are the duals of bounded representable $DRl$-monoids. This duality enables us to describe some structure properties of $BL$-algebras. (English) |
Keyword:
|
$BL$-algebra |
Keyword:
|
$MV$-algebra |
Keyword:
|
bounded $DRl$-monoid |
Keyword:
|
representable $DRl$-monoid |
Keyword:
|
prime spectrum |
Keyword:
|
basic fuzzy logic |
MSC:
|
03B52 |
MSC:
|
03G20 |
MSC:
|
03G25 |
MSC:
|
06F05 |
idZBL:
|
Zbl 0979.03049 |
idMR:
|
MR1970259 |
DOI:
|
10.21136/MB.2001.134199 |
. |
Date available:
|
2009-09-24T21:54:16Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134199 |
. |
Reference:
|
[1] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Springer, Berlin, 1977. MR 0648287 |
Reference:
|
[2] Chang, C. C.: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 456–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9 |
Reference:
|
[3] Chang, C. C.: A new proof of the completeness of the Łukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74–80. Zbl 0093.01104, MR 0122718 |
Reference:
|
[4] Cignoli, R.: Lattice-ordered abelian groups and completeness of Łukasiewicz and product $t$-norm.Sémin. Structures Alg. Ord., Univ. Paris VII, No. 68, 1999, pp. 14. |
Reference:
|
[5] Cignoli, R., Torrens, A.: The poset of prime $l$-ideals of an abelian $l$-group with a strong unit.J. Algebra 184 (1996), 604–614. MR 1409232, 10.1006/jabr.1996.0278 |
Reference:
|
[6] Hájek, P.: Basic fuzzy logic and $BL$-algebras.Inst. Comput. Sciences Acad. Sci. Czech Rep., Techn. Report V736 (1997). |
Reference:
|
[7] Hájek, P.: Metamathematics of Fuzzy Logic.Kluwer, Amsterdam, 1998. MR 1900263 |
Reference:
|
[8] Mundici, D.: Interpretation of AF $C^{*}$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. Zbl 0597.46059, MR 0819173, 10.1016/0022-1236(86)90015-7 |
Reference:
|
[9] Mundici, D.: $MV$-algebras are categorically equivalent to bounded commutative $BCK$-algebras.Math. Japonica 31 (1986), 889–894. Zbl 0633.03066, MR 0870978 |
Reference:
|
[10] Kovář, T.: A general theory of dually residuated lattice ordered monoids.Thesis, Palacký Univ., 1996. |
Reference:
|
[11] Rachůnek, J.: Prime ideals in autometrized algebras.Czechoslovak Math. J. 37 (1987), 65–69. MR 0875128 |
Reference:
|
[12] Rachůnek, J.: $DRl$-semigroups and $MV$-algebras.Czechoslovak Math. J. 48 (1998), 365–372. 10.1023/A:1022801907138 |
Reference:
|
[13] Rachůnek, J.: Spectra of autometrized lattice algebras.Math. Bohem. 123 (1998), 87–94. MR 1618727 |
Reference:
|
[14] Rachůnek, J.: $MV$-algebras are categorically equivalent to a class of $DRl_{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115 |
Reference:
|
[15] Rachůnek, J.: Ordered prime spectra of bounded $DRl$-monoids.Math. Bohem (to appear). MR 1802299 |
Reference:
|
[16] Swamy, K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284 |
Reference:
|
[17] Swamy, K. L. N.: Dually residuated lattice ordered semigroups II.Math. Ann. 160 (1965), 64–71. Zbl 0138.02104, MR 0191851, 10.1007/BF01364335 |
Reference:
|
[18] Swamy, K. L. N.: Dually residuated lattice ordered semigroups III.Math. Ann. 167 (1966), 71–74. Zbl 0158.02601, MR 0200364, 10.1007/BF01361218 |
Reference:
|
[19] Swamy, K. L. N., Rao, N. P.: Ideals in autometrized algebras.J. Austral. Math. Soc. 24 (1977), 362–374. MR 0469843, 10.1017/S1446788700020383 |
Reference:
|
[20] Swamy, K. L. N., Subba Rao, B. V.: Isometries in dually residuated lattice ordered semigroups.Math. Sem. Notes 8 (1980), 369–380. MR 0601906 |
Reference:
|
[21] Turunen, E.: Boolean deductive systems of $BL$-algebras.Research Report 61, Lappeenranta Univ. of Technology, Dept. Inf. Techn., 1998. |
. |