Previous |  Up |  Next

Article

Title: A duality between algebras of basic logic and bounded representable $DRl$-monoids (English)
Author: Rachůnek, Jiří
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 3
Year: 2001
Pages: 561-569
Summary lang: English
.
Category: math
.
Summary: $BL$-algebras, introduced by P. Hájek, form an algebraic counterpart of the basic fuzzy logic. In the paper it is shown that $BL$-algebras are the duals of bounded representable $DRl$-monoids. This duality enables us to describe some structure properties of $BL$-algebras. (English)
Keyword: $BL$-algebra
Keyword: $MV$-algebra
Keyword: bounded $DRl$-monoid
Keyword: representable $DRl$-monoid
Keyword: prime spectrum
Keyword: basic fuzzy logic
MSC: 03B52
MSC: 03G20
MSC: 03G25
MSC: 06F05
idZBL: Zbl 0979.03049
idMR: MR1970259
DOI: 10.21136/MB.2001.134199
.
Date available: 2009-09-24T21:54:16Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134199
.
Reference: [1] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Springer, Berlin, 1977. MR 0648287
Reference: [2] Chang, C. C.: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 456–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [3] Chang, C. C.: A new proof of the completeness of the Łukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74–80. Zbl 0093.01104, MR 0122718
Reference: [4] Cignoli, R.: Lattice-ordered abelian groups and completeness of Łukasiewicz and product $t$-norm.Sémin. Structures Alg. Ord., Univ. Paris VII, No. 68, 1999, pp. 14.
Reference: [5] Cignoli, R., Torrens, A.: The poset of prime $l$-ideals of an abelian $l$-group with a strong unit.J. Algebra 184 (1996), 604–614. MR 1409232, 10.1006/jabr.1996.0278
Reference: [6] Hájek, P.: Basic fuzzy logic and $BL$-algebras.Inst. Comput. Sciences Acad. Sci. Czech Rep., Techn. Report V736 (1997).
Reference: [7] Hájek, P.: Metamathematics of Fuzzy Logic.Kluwer, Amsterdam, 1998. MR 1900263
Reference: [8] Mundici, D.: Interpretation of AF $C^{*}$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. Zbl 0597.46059, MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [9] Mundici, D.: $MV$-algebras are categorically equivalent to bounded commutative $BCK$-algebras.Math. Japonica 31 (1986), 889–894. Zbl 0633.03066, MR 0870978
Reference: [10] Kovář, T.: A general theory of dually residuated lattice ordered monoids.Thesis, Palacký Univ., 1996.
Reference: [11] Rachůnek, J.: Prime ideals in autometrized algebras.Czechoslovak Math. J. 37 (1987), 65–69. MR 0875128
Reference: [12] Rachůnek, J.: $DRl$-semigroups and $MV$-algebras.Czechoslovak Math. J. 48 (1998), 365–372. 10.1023/A:1022801907138
Reference: [13] Rachůnek, J.: Spectra of autometrized lattice algebras.Math. Bohem. 123 (1998), 87–94. MR 1618727
Reference: [14] Rachůnek, J.: $MV$-algebras are categorically equivalent to a class of $DRl_{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437–441. MR 1667115
Reference: [15] Rachůnek, J.: Ordered prime spectra of bounded $DRl$-monoids.Math. Bohem (to appear). MR 1802299
Reference: [16] Swamy, K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105–114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284
Reference: [17] Swamy, K. L. N.: Dually residuated lattice ordered semigroups II.Math. Ann. 160 (1965), 64–71. Zbl 0138.02104, MR 0191851, 10.1007/BF01364335
Reference: [18] Swamy, K. L. N.: Dually residuated lattice ordered semigroups III.Math. Ann. 167 (1966), 71–74. Zbl 0158.02601, MR 0200364, 10.1007/BF01361218
Reference: [19] Swamy, K. L. N., Rao, N. P.: Ideals in autometrized algebras.J. Austral. Math. Soc. 24 (1977), 362–374. MR 0469843, 10.1017/S1446788700020383
Reference: [20] Swamy, K. L. N., Subba Rao, B. V.: Isometries in dually residuated lattice ordered semigroups.Math. Sem. Notes 8 (1980), 369–380. MR 0601906
Reference: [21] Turunen, E.: Boolean deductive systems of $BL$-algebras.Research Report 61, Lappeenranta Univ. of Technology, Dept. Inf. Techn., 1998.
.

Files

Files Size Format View
MathBohem_126-2001-3_4.pdf 314.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo