Title:
|
Singular Dirichlet problem for ordinary differential equations with $\phi$-Laplacian (English) |
Author:
|
Polášek, Vladimír |
Author:
|
Rachůnková, Irena |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
130 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
409-425 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We provide sufficient conditions for solvability of a singular Dirichlet boundary value problem with $$-Laplacian \[ \BOF\unknown. ((u^{\prime }))^{\prime } = f(t, u, u^{\prime }), u(0) = A, \ u(T) = B, \BOF\unknown. \] where $$ is an increasing homeomorphism, $(\mathbb{R})=\mathbb{R}$, $(0)=0$, $f$ satisfies the Carathéodory conditions on each set $[a, b]\times \mathbb{R}^{2}$ with $[a, b]\subset (0, T)$ and $f$ is not integrable on $[0, T]$ for some fixed values of its phase variables. We prove the existence of a solution which has continuous first derivative on $[0, T]$. (English) |
Keyword:
|
singular Dirichlet problem |
Keyword:
|
$$-Laplacian |
Keyword:
|
existence of smooth solution |
Keyword:
|
lower and upper functions |
MSC:
|
34B15 |
MSC:
|
34B16 |
idZBL:
|
Zbl 1114.34017 |
idMR:
|
MR2182386 |
DOI:
|
10.21136/MB.2005.134206 |
. |
Date available:
|
2009-09-24T22:22:56Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134206 |
. |
Reference:
|
[1] Callegari, A., Nachman, A.: Some singular, nonlinear differential equations arising in boundary layer theory.J. Math. Anal. Appl. 64 (1978), 96–105. MR 0478973, 10.1016/0022-247X(78)90022-7 |
Reference:
|
[2] Callegari, A., Nachman, A.: A nonlinear singular boundary value problem in the theory of pseudoplastic fluids.SIAM J. Appl. Math. 38 (1980), 275–281. MR 0564014, 10.1137/0138024 |
Reference:
|
[3] Atkinson, C., Bouillet, J. E.: Some qualitative properties of solutions of a generalized diffusion equation.Proc. Camb. Phil. Soc. 86 (1979), 495–510. MR 0542697, 10.1017/S030500410005636X |
Reference:
|
[4] Esteban, J. R., Vazques, J. L.: On the equation of turbulent filtration in one-dimensional porous media.Nonlinear Anal. 10 (1986), 1303–1325. MR 0866262, 10.1016/0362-546X(86)90068-4 |
Reference:
|
[5] Hidekazu Asakawa: Nonresonant singular two-point boundary value problems.Nonlinear Anal. 44 (2001), 791–809. Zbl 1042.34526, MR 1825782, 10.1016/S0362-546X(99)00308-9 |
Reference:
|
[6] Kiguradze, I. T.: Some Singular Boundary Value Problems for Ordinary Differential Equations.Izdat. Tbilis. Univ., Tbilisi, 1975. (Russian) MR 0499402 |
Reference:
|
[7] Kiguradze, I. T.: Some optimal conditions for solvability of two-point singular boundary value problem.Functional Differential Equations 10 (2003), 259–281. MR 2017411 |
Reference:
|
[8] Kiguradze, I. T., Shekhter, B. L.: Singular boundary value problems for second order ordinary differential equations.Itogi Nauki Tekh., Ser. Sovrm. Probl. Mat., Viniti 30 (1987), 105–201. MR 0925830 |
Reference:
|
[9] O’Regan, D.: Theory of Singular Boundary Value Problems.World Scientific, Singapore, 1995. MR 1286741 |
Reference:
|
[10] O’Regan, D.: Existence principles and theory for singular Dirichlet boundary value problems.Differential Equations and Dynamical Systems 3 (1995), 289–304. MR 1386750 |
Reference:
|
[11] O’Regan, D.: Singular Dirichlet boundary value problems I. Superlinear and nonresonant case.Nonlinear Anal., Theory Methods Appl. 29 (1997), 221–245. MR 1446226, 10.1016/S0362-546X(96)00026-0 |
Reference:
|
[12] O’Regan, D.: Singular Dirichlet boundary value problems II. Resonance case.Czechoslovak Math. J. 48 (1998), 269–289. MR 1624319, 10.1023/A:1022837420342 |
Reference:
|
[13] Bobisud, L. E., O’Regan, D.: Positive solutions for a class of nonlinear singular boundary value problems at resonance.J. Math. Anal. Appl. 184 (1994), 263–284. MR 1278388, 10.1006/jmaa.1994.1199 |
Reference:
|
[14] Lepin, A., Ponomarev, V.: On a singular boundary value problem for a second order ordinary differential equation.Nonlinear Anal. 42 (2000), 949–960. MR 1780446, 10.1016/S0362-546X(99)00139-X |
Reference:
|
[15] Lomtatidze, A., Malaguti, L.: On a two-point boundary value problem for the second order ordinary differential equations with singularities.Nonlinear Anal. 52 (2003), 1553–1567. MR 1951507, 10.1016/S0362-546X(01)00148-1 |
Reference:
|
[16] Baxley, J. V.: Numerical solution of singular nonlinear boundary value problems.Proceedings of the Third International Colloquium in Numerical Analysis. Plovdiv, Bulgaria, August 13–17, 1994, 1995, pp. 15–24. Zbl 0843.65055, MR 1455945 |
Reference:
|
[17] Baxley, J. V., Thompson, H. B.: Boundary behavior and computation of solutions of singular nonlinear boundary value problems.Communications on Appl. Analysis 4 (2000), 207–226. MR 1752847 |
Reference:
|
[18] De Coster, C.: Pairs of positive solutions for the one-dimensional $p$-Laplacian.Nonlinear Anal., Theory Methods Appl. 23 (1994), 669–681. Zbl 0813.34021, MR 1297285, 10.1016/0362-546X(94)90245-3 |
Reference:
|
[19] Cabada, A., Pouso, L. R.: Existence results for the problem $(\phi (u^{\prime }))^{\prime }=f(t, u, u^{\prime })$ with nonlinear boundary conditions.Nonlinear Anal. 35 (1999), 221–231. MR 1643240 |
Reference:
|
[20] Wang, J., Gao, W., Lin, Z.: Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem.Tôhoku Math. J. 47 (1995), 327–344. MR 1344906, 10.2748/tmj/1178225520 |
. |