Previous |  Up |  Next

Article

Title: Singular Dirichlet problem for ordinary differential equations with $\phi$-Laplacian (English)
Author: Polášek, Vladimír
Author: Rachůnková, Irena
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 4
Year: 2005
Pages: 409-425
Summary lang: English
.
Category: math
.
Summary: We provide sufficient conditions for solvability of a singular Dirichlet boundary value problem with $$-Laplacian \[ \BOF\unknown. ((u^{\prime }))^{\prime } = f(t, u, u^{\prime }), u(0) = A, \ u(T) = B, \BOF\unknown. \] where $$ is an increasing homeomorphism, $(\mathbb{R})=\mathbb{R}$, $(0)=0$, $f$ satisfies the Carathéodory conditions on each set $[a, b]\times \mathbb{R}^{2}$ with $[a, b]\subset (0, T)$ and $f$ is not integrable on $[0, T]$ for some fixed values of its phase variables. We prove the existence of a solution which has continuous first derivative on $[0, T]$. (English)
Keyword: singular Dirichlet problem
Keyword: $$-Laplacian
Keyword: existence of smooth solution
Keyword: lower and upper functions
MSC: 34B15
MSC: 34B16
idZBL: Zbl 1114.34017
idMR: MR2182386
DOI: 10.21136/MB.2005.134206
.
Date available: 2009-09-24T22:22:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134206
.
Reference: [1] Callegari, A., Nachman, A.: Some singular, nonlinear differential equations arising in boundary layer theory.J. Math. Anal. Appl. 64 (1978), 96–105. MR 0478973, 10.1016/0022-247X(78)90022-7
Reference: [2] Callegari, A., Nachman, A.: A nonlinear singular boundary value problem in the theory of pseudoplastic fluids.SIAM J. Appl. Math. 38 (1980), 275–281. MR 0564014, 10.1137/0138024
Reference: [3] Atkinson, C., Bouillet, J. E.: Some qualitative properties of solutions of a generalized diffusion equation.Proc. Camb. Phil. Soc. 86 (1979), 495–510. MR 0542697, 10.1017/S030500410005636X
Reference: [4] Esteban, J. R., Vazques, J. L.: On the equation of turbulent filtration in one-dimensional porous media.Nonlinear Anal. 10 (1986), 1303–1325. MR 0866262, 10.1016/0362-546X(86)90068-4
Reference: [5] Hidekazu Asakawa: Nonresonant singular two-point boundary value problems.Nonlinear Anal. 44 (2001), 791–809. Zbl 1042.34526, MR 1825782, 10.1016/S0362-546X(99)00308-9
Reference: [6] Kiguradze, I. T.: Some Singular Boundary Value Problems for Ordinary Differential Equations.Izdat. Tbilis. Univ., Tbilisi, 1975. (Russian) MR 0499402
Reference: [7] Kiguradze, I. T.: Some optimal conditions for solvability of two-point singular boundary value problem.Functional Differential Equations 10 (2003), 259–281. MR 2017411
Reference: [8] Kiguradze, I. T., Shekhter, B. L.: Singular boundary value problems for second order ordinary differential equations.Itogi Nauki Tekh., Ser. Sovrm. Probl. Mat., Viniti 30 (1987), 105–201. MR 0925830
Reference: [9] O’Regan, D.: Theory of Singular Boundary Value Problems.World Scientific, Singapore, 1995. MR 1286741
Reference: [10] O’Regan, D.: Existence principles and theory for singular Dirichlet boundary value problems.Differential Equations and Dynamical Systems 3 (1995), 289–304. MR 1386750
Reference: [11] O’Regan, D.: Singular Dirichlet boundary value problems I. Superlinear and nonresonant case.Nonlinear Anal., Theory Methods Appl. 29 (1997), 221–245. MR 1446226, 10.1016/S0362-546X(96)00026-0
Reference: [12] O’Regan, D.: Singular Dirichlet boundary value problems II. Resonance case.Czechoslovak Math. J. 48 (1998), 269–289. MR 1624319, 10.1023/A:1022837420342
Reference: [13] Bobisud, L. E., O’Regan, D.: Positive solutions for a class of nonlinear singular boundary value problems at resonance.J. Math. Anal. Appl. 184 (1994), 263–284. MR 1278388, 10.1006/jmaa.1994.1199
Reference: [14] Lepin, A., Ponomarev, V.: On a singular boundary value problem for a second order ordinary differential equation.Nonlinear Anal. 42 (2000), 949–960. MR 1780446, 10.1016/S0362-546X(99)00139-X
Reference: [15] Lomtatidze, A., Malaguti, L.: On a two-point boundary value problem for the second order ordinary differential equations with singularities.Nonlinear Anal. 52 (2003), 1553–1567. MR 1951507, 10.1016/S0362-546X(01)00148-1
Reference: [16] Baxley, J. V.: Numerical solution of singular nonlinear boundary value problems.Proceedings of the Third International Colloquium in Numerical Analysis. Plovdiv, Bulgaria, August 13–17, 1994, 1995, pp. 15–24. Zbl 0843.65055, MR 1455945
Reference: [17] Baxley, J. V., Thompson, H. B.: Boundary behavior and computation of solutions of singular nonlinear boundary value problems.Communications on Appl. Analysis 4 (2000), 207–226. MR 1752847
Reference: [18] De Coster, C.: Pairs of positive solutions for the one-dimensional $p$-Laplacian.Nonlinear Anal., Theory Methods Appl. 23 (1994), 669–681. Zbl 0813.34021, MR 1297285, 10.1016/0362-546X(94)90245-3
Reference: [19] Cabada, A., Pouso, L. R.: Existence results for the problem $(\phi (u^{\prime }))^{\prime }=f(t, u, u^{\prime })$ with nonlinear boundary conditions.Nonlinear Anal. 35 (1999), 221–231. MR 1643240
Reference: [20] Wang, J., Gao, W., Lin, Z.: Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem.Tôhoku Math. J. 47 (1995), 327–344. MR 1344906, 10.2748/tmj/1178225520
.

Files

Files Size Format View
MathBohem_130-2005-4_7.pdf 389.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo