Previous |  Up |  Next

Article

Title: Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion (English)
Author: Lee, Tuo-Yeong
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 4
Year: 2005
Pages: 349-354
Summary lang: English
.
Category: math
.
Summary: It is shown that a Banach-valued Henstock-Kurzweil integrable function on an $m$-dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function $f \: [0,1]^2 \longrightarrow {\mathbb{R}}$ and a continuous function $F \: [0,1]^2 \longrightarrow {\mathbb{R}}$ such that \[ (¶) \int _0^x \bigg \lbrace (¶) \int _0^yf(u,v) \mathrm{d}v \bigg \rbrace \mathrm{d}u = (¶) \int _0^y \bigg \lbrace (¶) \int _0^xf(u,v) \mathrm{d}u \bigg \rbrace \mathrm{d}v = F(x,y) \] for all $(x,y) \in [0,1]^2$. (English)
Keyword: Henstock-Kurzweil integral
Keyword: McShane integral
MSC: 26A39
MSC: 28B05
idZBL: Zbl 1112.28008
idMR: MR2182381
DOI: 10.21136/MB.2005.134207
.
Date available: 2009-09-24T22:22:12Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134207
.
Reference: [1] Z. Buczolich: Henstock integrable functions are Lebesgue integrable on a portion.Proc. Amer. Math. Soc. 111 (1991), 127–129. Zbl 0732.26011, MR 1034883, 10.1090/S0002-9939-1991-1034883-6
Reference: [2] D. H. Fremlin: The Henstock and McShane integrals of vector-valued functions.Illinois J. Math. 38 (1994), 471–479. Zbl 0797.28006, MR 1269699, 10.1215/ijm/1255986726
Reference: [3] D. H. Fremlin, J. Mendoza: The integration of vector-valued functions.Illinois J. Math. 38 (1994), 127–147. MR 1245838, 10.1215/ijm/1255986891
Reference: [4] R. A. Gordon: The McShane integral of Banach-valued functions.Illinois J. Math. 34 (1990), 557–567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [5] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics Volume 4, AMS, 1994. Zbl 0807.26004, MR 1288751
Reference: [6] K. Karták: Zur Theorie des mehrdimensionalen Integrals.Časopis Pěst. Mat. 80 (1955), 400–414. (Czech) MR 0089249
Reference: [7] J. Kurzweil, J. Jarník: Equi-integrability and controlled convergence of Perron-type integrable functions.Real Anal. Exchange 17 (1991/92), 110–139. MR 1147361
Reference: [8] Peng-Yee Lee, R. Výborný: The integral, An Easy Approach after Kurzweil and Henstock.Australian Mathematical Society Lecture Series 14 (Cambridge University Press, 2000). MR 1756319
Reference: [9] Tuo-Yeong Lee: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space.Proc. London Math. Soc. 87 (2003), 677–700. Zbl 1047.26006, MR 2005879
Reference: [10] Tuo-Yeong Lee: Some full characterizations of the strong McShane integral.Math. Bohem. 129 (2004), 305–312. Zbl 1080.26006, MR 2092716
Reference: [11] Š. Schwabik, Guoju Ye: The McShane and the Pettis integral of Banach space-valued functions defined on ${\mathbb{R}}^m$.Illinois J. Math. 46 (2002), 1125–1144. MR 1988254, 10.1215/ijm/1258138470
Reference: [12] G. P. Tolstov: On the curvilinear and iterated integral.Trudy Mat. Inst. Steklov. 35 (1950), 102 pp. (Russian) MR 0044612
.

Files

Files Size Format View
MathBohem_130-2005-4_2.pdf 311.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo