Title:
|
Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion (English) |
Author:
|
Lee, Tuo-Yeong |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
130 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
349-354 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is shown that a Banach-valued Henstock-Kurzweil integrable function on an $m$-dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function $f \: [0,1]^2 \longrightarrow {\mathbb{R}}$ and a continuous function $F \: [0,1]^2 \longrightarrow {\mathbb{R}}$ such that \[ (¶) \int _0^x \bigg \lbrace (¶) \int _0^yf(u,v) \mathrm{d}v \bigg \rbrace \mathrm{d}u = (¶) \int _0^y \bigg \lbrace (¶) \int _0^xf(u,v) \mathrm{d}u \bigg \rbrace \mathrm{d}v = F(x,y) \] for all $(x,y) \in [0,1]^2$. (English) |
Keyword:
|
Henstock-Kurzweil integral |
Keyword:
|
McShane integral |
MSC:
|
26A39 |
MSC:
|
28B05 |
idZBL:
|
Zbl 1112.28008 |
idMR:
|
MR2182381 |
DOI:
|
10.21136/MB.2005.134207 |
. |
Date available:
|
2009-09-24T22:22:12Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134207 |
. |
Reference:
|
[1] Z. Buczolich: Henstock integrable functions are Lebesgue integrable on a portion.Proc. Amer. Math. Soc. 111 (1991), 127–129. Zbl 0732.26011, MR 1034883, 10.1090/S0002-9939-1991-1034883-6 |
Reference:
|
[2] D. H. Fremlin: The Henstock and McShane integrals of vector-valued functions.Illinois J. Math. 38 (1994), 471–479. Zbl 0797.28006, MR 1269699, 10.1215/ijm/1255986726 |
Reference:
|
[3] D. H. Fremlin, J. Mendoza: The integration of vector-valued functions.Illinois J. Math. 38 (1994), 127–147. MR 1245838, 10.1215/ijm/1255986891 |
Reference:
|
[4] R. A. Gordon: The McShane integral of Banach-valued functions.Illinois J. Math. 34 (1990), 557–567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170 |
Reference:
|
[5] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics Volume 4, AMS, 1994. Zbl 0807.26004, MR 1288751 |
Reference:
|
[6] K. Karták: Zur Theorie des mehrdimensionalen Integrals.Časopis Pěst. Mat. 80 (1955), 400–414. (Czech) MR 0089249 |
Reference:
|
[7] J. Kurzweil, J. Jarník: Equi-integrability and controlled convergence of Perron-type integrable functions.Real Anal. Exchange 17 (1991/92), 110–139. MR 1147361 |
Reference:
|
[8] Peng-Yee Lee, R. Výborný: The integral, An Easy Approach after Kurzweil and Henstock.Australian Mathematical Society Lecture Series 14 (Cambridge University Press, 2000). MR 1756319 |
Reference:
|
[9] Tuo-Yeong Lee: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space.Proc. London Math. Soc. 87 (2003), 677–700. Zbl 1047.26006, MR 2005879 |
Reference:
|
[10] Tuo-Yeong Lee: Some full characterizations of the strong McShane integral.Math. Bohem. 129 (2004), 305–312. Zbl 1080.26006, MR 2092716 |
Reference:
|
[11] Š. Schwabik, Guoju Ye: The McShane and the Pettis integral of Banach space-valued functions defined on ${\mathbb{R}}^m$.Illinois J. Math. 46 (2002), 1125–1144. MR 1988254, 10.1215/ijm/1258138470 |
Reference:
|
[12] G. P. Tolstov: On the curvilinear and iterated integral.Trudy Mat. Inst. Steklov. 35 (1950), 102 pp. (Russian) MR 0044612 |
. |