Previous |  Up |  Next

Article

Title: On the geometry of some para-hypercomplex Lie groups (English)
Author: Salimi Moghaddam, H. R.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 3
Year: 2009
Pages: 159-170
Summary lang: English
.
Category: math
.
Summary: In this paper, firstly we study some left invariant Riemannian metrics on para-hypercomplex 4-dimensional Lie groups. In each Lie group, the Levi-Civita connection and sectional curvature have been given explicitly. We also show these spaces have constant negative scalar curvatures. Then by using left invariant Riemannian metrics introduced in the first part, we construct some left invariant Randers metrics of Berwald type. The explicit formulas for computing flag curvature have been obtained in all cases. Some of these Finsler Lie groups are of non-positive flag curvature. (English)
Keyword: para-hypercomplex structure
Keyword: left invariant Riemannian metric
Keyword: Randers metric
Keyword: Berwald metric
Keyword: sectional curvature
Keyword: flag curvature
MSC: 53B35
MSC: 53C15
MSC: 53C60
MSC: 58B20
idZBL: Zbl 1212.53053
idMR: MR2591672
.
Date available: 2009-09-18T11:24:00Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/134230
.
Reference: [1] Antonelli, P. L., Ingarden, R. S., Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology.Kluwer Academic Publishers, 1993. Zbl 0821.53001, MR 1273129
Reference: [2] Asanov, G. S.: Finsler Geometry, Relativity and Gauge Theories.D. Reidel Publishing Company, 1985. Zbl 0576.53001, MR 0827217
Reference: [3] Bao, D., Chern, S. S., Shen, Z.: An Introduction to Riemann-Finsler Geometry.Springer, Berlin, 2000. Zbl 0954.53001, MR 1747675
Reference: [4] Barberis, M. L.: Hypercomplex structures on four-dimensional Lie groups.Proc. Amer. Math. Soc. 125 (4) (1997), 1043–1054. Zbl 0882.53047, MR 1353375, 10.1090/S0002-9939-97-03611-3
Reference: [5] Barberis, M. L.: Hyper-Kahler Metrics Conformal to Left Invariant Metrics on Four-Dimensional Lie Groups.Math. Phys. Anal. Geom. 6 (2003), 1–8. Zbl 1031.53074, MR 1962699, 10.1023/A:1022448007111
Reference: [6] Blažić, N., Vukmirović, S.: Four-dimensional Lie algebras with a para-hypercomplex structure.preprint, arxiv:math/0310180v1 [math.DG] (2003). MR 2737373
Reference: [7] Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of Euclidean supersymmetry II. Hypermultiplets and the $c-$map.Tech. report, Institute of Physics Publishing for SISSA, 2005. MR 2158552
Reference: [8] Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds.J. Phys. A, Math. Gen. 37 (2004), 4353–4360. Zbl 1062.58007, MR 2063598, 10.1088/0305-4470/37/15/004
Reference: [9] Deng, S., Hou, Z.: Invariant Randers metrics on homogeneous Riemannian manifolds.J. Phys. A, Math. Gen. 37 (2004), 4353–4360. Zbl 1049.83005, MR 2063598, 10.1088/0305-4470/37/15/004
Reference: [10] Esrafilian, E., Moghaddam, H. R. Salimi: Flag curvature of invariant Randers metrics on homogeneous manifolds.J. Phys. A, Math. Gen. 39 (2006), 3319–3324. MR 2214213, 10.1088/0305-4470/39/13/011
Reference: [11] Esrafilian, E., Moghaddam, H. R. Salimi: Induced invariant Finsler metrics on quotient groups.Balkan J. Geom. Appl. 11 (1) (2006), 73–79. MR 2234541
Reference: [12] Gibbons, G. W., Papadopoulos, G., Stelle, K. S.: HKT and OKT geometries on soliton black hole moduli spaces.Nuclear Phys. B 508 (1997), 623–658. Zbl 0925.83060, MR 1600079
Reference: [13] Moghaddam, H. R. Salimi: Flag curvature of invariant $(\alpha ,\beta )$-metrics of type $\frac{(\alpha +\beta )^2}{\alpha }$.J. Phys. A, Math. Theor. 41 (24), Article ID 275206, 6pp. MR 2455543
Reference: [14] Moghaddam, H. R. Salimi: On the flag curvature of invariant Randers metrics.Math. Phys. Anal. Geom. 11 (2008), 1–9. MR 2428098, 10.1007/s11040-008-9037-8
Reference: [15] Moghaddam, H. R. Salimi: On some hypercomplex 4-dimensional Lie groups of constant scalar curvature.Internat. J. Geom. Methods in Modern Phys. 6 (4) (2009), 619–624. MR 2541940, 10.1142/S0219887809003710
Reference: [16] Moghaddam, H. R. Salimi: Randers metrics of Berwald type on 4-dimensional hypercomplex Lie groups.J. Phys. A, Math. Theor. 095212 42 (2009), ID 095212, 7pp. MR 2525540, 10.1088/1751-8113/42/9/095212
Reference: [17] Moghaddam, H. R. Salimi: Some Berwald spaces of non-positive flag curvature.J. Geom. Phys. 59 (2009), 969–975. MR 2536856, 10.1016/j.geomphys.2009.04.003
Reference: [18] Poon, Y. S.: Examples of hyper-Kähler connections with torsion.Vienna, preprint ESI, 770 (1999), 1-7. Zbl 0989.53028, MR 1848672
Reference: [19] Randers, G.: On an asymmetrical metric in the four-space of general relativity.Phys. Rev. 59 (1941), 195–199. Zbl 0027.18101, MR 0003371, 10.1103/PhysRev.59.195
Reference: [20] Shen, Z.: Lectures on Finsler Geometry.World Scientific, 2001. Zbl 0974.53002, MR 1845637
.

Files

Files Size Format View
ArchMathRetro_045-2009-3_1.pdf 485.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo