Previous |  Up |  Next

Article

Title: The linear model with variance-covariance components and jackknife estimation (English)
Author: Kudeláš, Jaromír
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 2
Year: 1994
Pages: 111-125
Summary lang: English
.
Category: math
.
Summary: Let $\theta^*$ be a biased estimate of the parameter $\vartheta$ based on all observations $x_1$, $\dots$, $x_n$ and let $\theta_{-i}^*$ ($i=1,2,\dots,n$) be the same estimate of the parameter $\vartheta$ obtained after deletion of the $i$-th observation. If the expectation of the estimators $\theta^*$ and $\theta_{-i}^*$ are expressed as $$ \align \mathrm{E}(\theta^*)&=\vartheta+a(n)b(\vartheta) \\ \mathrm{E}(\theta_{-i}^*)&=\vartheta+a(n-1)b(\vartheta)\qquad i=1,2,\dots,n, \endalign $$ where $a(n)$ is a known sequence of real numbers and $b(\vartheta)$ is a function of $\vartheta$, then this system of equations can be regarded as a linear model. The least squares method gives the generalized jackknife estimator. Using this method, it is possible to obtain the unbiased estimator of the parameter $\vartheta$. (English)
Keyword: Jackknife estimator
Keyword: least squares estimator
Keyword: linear model
Keyword: estimator of variance-covariance components
Keyword: consistency
MSC: 62F10
MSC: 62J10
idZBL: Zbl 0797.62057
idMR: MR1258187
DOI: 10.21136/AM.1994.134248
.
Date available: 2009-09-22T17:43:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134248
.
Reference: [1] W. Kruskal: When are Gauss-Markov and least square estimators identical? A coordinate free approach.Ann. Math. Statistics 39 (1968), 70–75. MR 0222998, 10.1214/aoms/1177698505
Reference: [2] G. H. Lavergne, J. R. Mathieu: The jackknife method and the Gauss-Markov estimation.Probability and Math. Statistics 8 (1987), 111–116. MR 0928124
Reference: [3] R. C. Miller, jr.: An unbalanced jackknife.Ann. Math. Statistics 2 (1974), 880–891. Zbl 0289.62042, MR 0356353, 10.1214/aos/1176342811
Reference: [4] M. H. Quenouille: Approximate test of correlation in time-series.J. Roy. Statist. Soc. Ser. B 11 (1949), 68–84. MR 0032176
Reference: [5] M. H. Quenouille: Notes on bias in estimation.Biometrika 43 (1956), 353–360. Zbl 0074.14003, MR 0081040, 10.1093/biomet/43.3-4.353
Reference: [6] C. R. Rao: Linear statistical inference and its applications.J. Wiley, 1973. Zbl 0256.62002, MR 0346957
Reference: [7] F. Štulajter: Consistency of linear and quadratic least squares estimators in regression models with covariance stationary errors.Applications of Mathematics 36(2) (1991), 149–155. MR 1097699
Reference: [8] J. W. Tukey: Variances of variance components: II. The unbalanced single classification.Ann. Math. Statist. 28 (1957), 43–56. MR 0084974, 10.1214/aoms/1177707036
.

Files

Files Size Format View
AplMat_39-1994-2_3.pdf 1.406Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo