Previous |  Up |  Next

Article

Title: Modelling of singularities in elastoplastic materials with fatigue (English)
Author: Krejčí, Pavel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 2
Year: 1994
Pages: 137-160
Summary lang: English
.
Category: math
.
Summary: The hypothesis that, on the macroscopic level, the accumulated fatigue of an elastoplastic material with kinematic hardening can be identified from the mathematical point of view with the dissipated energy, is used for the construction of a new constitutive elastoplastic fatigue model. Its analytical investigation characterizes conditions for the formation of singularities in a finite time. The corresponding constitutive law is then coupled with the dynamical equation of motion of a one-dimensional continuum and the resulting hyperbolic problem is solved via space-discretization method. (English)
Keyword: hysteresis
Keyword: elastoplasticity
Keyword: fatigue
Keyword: hyperbolic system
MSC: 35L67
MSC: 73M10
MSC: 74R99
idZBL: Zbl 0804.73043
idMR: MR1258189
DOI: 10.21136/AM.1994.134250
.
Date available: 2009-09-22T17:43:30Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134250
.
Reference: [1] A. Beste, K. Dressler, H. Kötzle, W. Krüger, B. Maier, J. Petersen: Multiaxial rainflow (preprint)..
Reference: [2] J. Betten: Elastizitäts- und Plastizitätslehre.Vieweg, 1986. (German)
Reference: [3] M. Brokate, K. Dressler, P. Krejčí: On the Mróz model.Preprint no. 74, Universität Kaiserslautern, 1992. MR 1419644
Reference: [4] M. Brokate, K. Dressler, P. Krejčí: Rainflow counting and energy dissipation for hysteresis models in elastoplasticity.(to appear). MR 1412202
Reference: [5] T. H. Hildebrandt: Introduction to the theory of integration.Academic Press, 1963. Zbl 0112.28302, MR 0154957
Reference: [6] M. A. Krasnoselskii, A.V. Pokrovskii: Systems with hysteresis.Nauka, Moscow, 1983. (Russian) MR 0742931
Reference: [7] P. Krejčí: On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case.Apl. Mat. 34 (1989), 364–374. MR 1014077
Reference: [8] P. Krejčí: Vector hysteresis models.Euro. Jnl. Appl. Math. 2 (1991), 281–292. MR 1123144, 10.1017/S0956792500000541
Reference: [9] P. Krejčí: Vector hysteresis models II. Shape dependence.(to appear). MR 1123144
Reference: [10] P. Krejčí: Global behaviour of solutions to the wave equation with hysteresis.Adv. Math. Sci. Appl. 2 (1993), 1–23.
Reference: [11] J. Lemaitre, J.-L. Chaboche: Mechanics of solid materials.Cambridge Univ. Press, 1990.
Reference: [12] M. Matsuishi, T. Endo: Fatigue of metals subjected to varying stress.Proc. Kyushi Branch JSME, 1968, pp. 37–40.
Reference: [13] A. Visintin: Differential models of hysteresis.Springer, to appear. Zbl 0820.35004, MR 1329094
Reference: [14] H. Ziegler: An introduction to thermomechanics, 2${}^{\text{nd}}$ edition.North-Holland, 1983. MR 0732945
.

Files

Files Size Format View
AplMat_39-1994-2_5.pdf 2.392Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo