Previous |  Up |  Next

Article

Title: Co-solutions of algebraic matrix equations and higher order singular regular boundary value problems (English)
Author: Jódar, Lucas
Author: Navarro, Enrique
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 3
Year: 1994
Pages: 189-202
Summary lang: English
.
Category: math
.
Summary: In this paper we obtain existence conditions and a closed form of the general solution of higher order singular regular boundary value problems. The approach is based on the concept of co-solution of algebraic matrix equations of polynomial type that permits the treatment of the problem without considering an extended first order system as it has been done in the known literature. (English)
Keyword: algebraic matrix equation
Keyword: co-solution
Keyword: singular regular system
Keyword: boundary value problem
Keyword: Drazin inverse
Keyword: closed form solution
MSC: 34A08
MSC: 34B10
idZBL: Zbl 0814.34014
idMR: MR1273632
DOI: 10.21136/AM.1994.134252
.
Date available: 2009-09-22T17:43:44Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134252
.
Reference: [1] K. M. Anstreicher and U. G. Rotblum: Using Gauss-Jordan elimination to compute the index, generalized nullspaces and the Drazin inverse.Linear Algebra Appl. 85 (1987), 221–239. MR 0869356, 10.1016/0024-3795(87)90219-9
Reference: [2] S. L. Campbell: Singular Systems of Differential Equations.Pitman Pubs. Co., 1980. Zbl 0419.34007
Reference: [3] S. L. Campbell and C. D. Meyer, jr.: Generalized Inverses of Linear Transformations.Pitman Pubs. Co., 1979.
Reference: [4] R. C. Dorf: Modern Control Systems.Addison-Wesley Pubs. Co., 1974.
Reference: [5] R. J. Duffin: A minimax theory of overdamped networks.J. Rat. Mech. and Anal. 4 (1955), 221–223. MR 0069030
Reference: [6] R. J. Duffin: Chrystal’s theorem on differential equations systems.J. Math. Anal. and Appl. 8 (1963), 325–331. MR 0162005, 10.1016/0022-247X(64)90072-1
Reference: [7] I. Gohberg, M. A. Kaashoek, L. Lerer and L. Rodman: Common multiples and common divisors of matrix polynomials, I. Spectral method.Ind. J. Math. 30 (1981), 321–356. MR 0611224, 10.1512/iumj.1981.30.30027
Reference: [8] J. W. Hooker and C. E. Langenhop: On regular systems of linear differential equations with constant coefficients.Rocky Mountain J. Maths. 12 (1982), 591–614. MR 0683854, 10.1216/RMJ-1982-12-4-591
Reference: [9] L. Jódar and E. Navarro: Rectangular co-solutions of polynomial matrix equations and applications.Applied Maths. Letters 4(2) (1991), 13–16. MR 1095642
Reference: [10] C. E. Langenhop: The Laurent expansion of a nearly singular matrix.Linear Algebra Appls. 4 (1971), 329–340. MR 0371934
Reference: [11] : MACSYMA.MACSYMA Symbolic Inc., 1989. Zbl 0745.33007
Reference: [12] C. B. Moler: MATLAB User’s guide, Tech. Rep. CS81.Department of Computer Science, Univ. of Mexico, Alburquerque, New Mexico 87131, 1980.
Reference: [13] J. M. Ortega: Numerical Analysis, A second course.Academic Press, 1972. Zbl 0248.65001, MR 0403154
Reference: [14] K. Rektorys: The Method of Discretization in Time and Partial Differential Equations.D. Reidel Pubs. Co., 1982. Zbl 0522.65059, MR 0689712
Reference: [15] C. R. Rao and S. K. Mitra: Generalized Inverse of Matrices and its Applications.John Wiley, 1971. MR 0338013
.

Files

Files Size Format View
AplMat_39-1994-3_2.pdf 1.853Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo