[2] T. Cipra: 
Some problems of exponential smoothing. Aplikace matematiky 34 (1989), 161–169. 
MR 0990303 | 
Zbl 0673.62079[4] T. Cipra and R. Romera: 
Robust Kalman filter and its application in time series analysis. Kybernetika 27 (1991), 481–494. 
MR 1150938[5] T. Cipra and R. Romera: 
Recursive time series methods in $L_1$-norm. $L_1$-Statistical Analysis and Related Methods (Y. Dodge, ed.), North Holland, Amsterdam, 1992, pp. 233–243. 
MR 1214835[6] T. Cipra, A. Rubio and L. Canal: Robustified smoothing and forecasting procedures. Czechoslovak Journal of Operations Research 1 (1992), 41–56.
[9] P. Lefrançois: 
Allowing for asymmetry in forecast errors: Results from a Monte-Carlo study. International Journal of Forecasting 5 (1989), 99–110. 
DOI 10.1016/0169-2070(89)90067-8[10] W. K. Newey and J. L. Powell: 
Asymmetric least squares estimation and testing. Econometrica 55 (1987), 819–847. 
DOI 10.2307/1911031 | 
MR 0906565[11] H. Robbins and D. Siegmund: 
A convergence theorem for non negative almost supermartingales and some applications. Optimizing Methods in Statistics (J. S. Rustagi, ed.), Academic Press, New York, 1971, pp. 233–257. 
MR 0343355[12] K. Sejling, H. Madsen, J. Holst, U. Holst and J.-E. Englund: A method for recursive robust estimation of $AR$-parameters. Preprint, Technical University of Lyngby, Denmark and University of Lund, Sweden, 1990.