Previous |  Up |  Next

Article

Title: Nonlinear boundary value problems with application to semiconductor device equations (English)
Author: Pospíšek, Miroslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 4
Year: 1994
Pages: 241-258
Summary lang: English
.
Category: math
.
Summary: The paper deals with boundary value problems for systems of nonlinear elliptic equations in a relatively general form. Theorems based on monotone operator theory and concerning the existence of weak solutions of such a system, as well as the convergence of discretized problem solutions are presented. As an example, the approach is applied to the stationary Van Roosbroeck’s system, arising in semiconductor device modelling. A convergent algorithm suitable for solving sets of algebraic equations generated by the discretization procedure proposed will be described in a forthcoming paper. (English)
Keyword: boundary value problems for systems of nonlinear elliptic equations
Keyword: semiconductor device equations
Keyword: Galerkin method
Keyword: nonlinear Neumann boundary conditions
Keyword: elliptic systems
Keyword: well-posedness
Keyword: convergence
MSC: 35J65
MSC: 65N12
MSC: 65N30
MSC: 65P05
MSC: 78A55
idZBL: Zbl 0837.65127
idMR: MR1284099
DOI: 10.21136/AM.1994.134255
.
Date available: 2009-09-22T17:44:04Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134255
.
Reference: [1] J. F. Bürgler, R. E. Bank, W. Fichtner, R. K. Smith: A new discretization scheme for the semiconductor current continuity equations.IEEE Trans. on CAD 8 (1989), 479–489. 10.1109/43.24876
Reference: [2] Z. Chen: Hybrid variable finite elements for semiconductor devices.Comput. Math. Appl. 19 (1990), 65–73. Zbl 0705.65097, MR 1028621, 10.1016/0898-1221(90)90138-A
Reference: [3] J. Franců: Monotone operators. A survey directed to applications to differential equations.Apl. Mat. 35 (1990), 257–301. MR 1065003
Reference: [4] S. Fučík, A. Kufner: Nonlinear Differential Equations.Czech edition – SNTL, Prague, 1978.
Reference: [5] H. Gajewski: On uniqueness and stability of steady-state carrier distributions in semiconductors.Proc. Equadiff Conf. 1985, Springer, Berlin, 1986, pp. 209–219. Zbl 0609.35024, MR 0877126
Reference: [6] K. Gröger: On steady-state carrier distributions in semiconductor devices.Apl. Mat. 32 (1987), 49–56. MR 0879329
Reference: [7] H. K. Gummel: A self-consistent iterative scheme for one-dimensional steady state transistor calculations.IEEE Trans. on Electron Devices ED-11 (1964), 455–465. 10.1109/T-ED.1964.15364
Reference: [8] W. Hackbusch: On first and second order box schemes.Computing 41 (1989), 277–296. Zbl 0649.65052, MR 0993825, 10.1007/BF02241218
Reference: [9] J. W. Jerome: Consistency of semiconductor modelling: An existence/stability analysis for the stationary Van Roosbroeck system.SIAM J.Appl.Math. 45 (1985), 565–590. MR 0796097, 10.1137/0145034
Reference: [10] P. A. Markowich: The Stationary Semiconductor Device Equations.Springer-Verlag, Wien–New York 1986. MR 0821965
Reference: [11] P. A. Markowich, M. Zlámal: Inverse-average-type finite element discretizations of self-adjoint second order elliptic problems.Math. Comp. 51 (1988), 431–449. MR 0930223, 10.1090/S0025-5718-1988-0930223-7
Reference: [12] J. Miller: Mixed FEM for semiconductor devices.In: Numerical Mathematics. Singapore 1988. Proc. Int. Conf., R.P. Agarwal, Y.M. Chow, S.J. Wilson (eds.), Basel, Birkhäuser Verlag, 1988, pp. 349–356. MR 1022967
Reference: [13] M. S. Mock: Analysis of Mathematical Models of Semiconductor Devices.Boole Press, Dublin, 1983. Zbl 0532.65081, MR 0697094
Reference: [14] J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations.Teubner Texte zur Math. 52, Leipzig, 1987. MR 0731261
Reference: [15] M. Pospíšek: Mathematical Methods in Semiconductor Device Modelling.PhD Thesis, MÚ ČSAV, Prague, 1991. (Czech)
Reference: [16] M. Pospíšek: Convergent algorithms suitable for the solution of the semiconductor device equations.To be published.
Reference: [17] W.V. Van Roosbroeck: Theory of flow of electrons and holes in germanium and other semiconductors.Bell Syst. Tech. J. 29 (1950), 560–607. 10.1002/j.1538-7305.1950.tb03653.x
Reference: [18] D. L. Scharfetter, H. K. Gummel: Large signal analysis of a silicon Read diode oscillator.IEEE Trans. Electron Devices ED-16 (1969), 64–77. 10.1109/T-ED.1969.16566
Reference: [19] N. Shigyo, T. Wada, S. Yasuda: Discretization problem for multidimensional current flow.IEEE Trans. on CAD 8 (1989), 1046–1050. 10.1109/43.39066
Reference: [20] R. S. Varga: Matrix Iterative Analysis.Prentice-Hall, Englewood Cliffs, NJ, 1962. MR 0158502
.

Files

Files Size Format View
AplMat_39-1994-4_1.pdf 1.738Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo