Previous |  Up |  Next

Article

Title: On limits of $L_p$-norms of an integral operator (English)
Author: Stavinoha, Pavel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 4
Year: 1994
Pages: 299-307
Summary lang: English
.
Category: math
.
Summary: A recurrence relation for the computation of the $L_p$-norms of an Hermitian Fredholm integral operator is derived and an expression giving approximately the number of eigenvalues which in absolute value are equal to the spectral radius is determined. Using the $L_p$-norms for the approximation of the spectral radius of this operator an a priori and an a posteriori bound for the error are obtained. Some properties of the a posteriori bound are discussed. (English)
Keyword: $L_p$-norms of an integral operator
Keyword: Hermitian Fredholm integral operator
MSC: 47A10
MSC: 47A30
MSC: 47A53
MSC: 47B15
MSC: 47G10
idZBL: Zbl 0816.47055
idMR: MR1284103
DOI: 10.21136/AM.1994.134259
.
Date available: 2009-09-22T17:44:29Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134259
.
Reference: [1] L. G. Brown, H. Kosaki: Jensen’s inequality in semi-finite von Neumann algebras.J. Operator Theory 23 (1990), 3–19. MR 1054812
Reference: [2] A. C. Hearn: REDUCE 2 user’s manual.University of Utah, USA, 1973.
Reference: [3] R. A. Kunze: $L_p$ Fourier transforms on locally compact unimodular groups.Trans. Amer. Math. Soc. 89 (1958), 519–540. MR 0100235
Reference: [4] C. A. McCarthy: $c_p$.Israel J. Math. 5 (1967), 249–271. MR 0225140
Reference: [5] S. G. Michlin, Ch. L. Smolickij: Approximate methods of solution of differential and integral equations.Nauka, Moscow, 1965. (Russian) MR 0192630
Reference: [6] J. Peetre, G. Sparr: Interpolation and non-commutative integration.Ann. of Math. Pura Appl. 104 (1975), 187–207. MR 0473869, 10.1007/BF02417016
Reference: [7] I. E. Segal: A non-commutative extension of abstract integration.Ann. of Math. 57 (1953), 401–457, correction 58(1953), 595–596. Zbl 0051.34202, MR 0054864, 10.2307/1969759
Reference: [8] P. Stavinoha: Convergence of $L_p$-norms of a matrix.Aplikace matematiky 30 (1985), 351–360. MR 0806832
Reference: [9] P. Stavinoha: On limits of $L_p$-norms of a linear operator.Czech. Math. J. 32 (1982), 474–480. MR 0669788
.

Files

Files Size Format View
AplMat_39-1994-4_5.pdf 1.160Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo