Previous |  Up |  Next

Article

Title: Order statistics and $(r,s)$-entropy measures (English)
Author: Esteban, M. D.
Author: Morales, D.
Author: Pardo, L.
Author: Menéndez, M. L.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 5
Year: 1994
Pages: 321-337
Summary lang: English
.
Category: math
.
Summary: K. M. Wong and S. Chen [9] analyzed the Shannon entropy of a sequence of random variables under order restrictions. Using $(r,s)$-entropies, I. J. Taneja [8], these results are generalized. Upper and lower bounds to the entropy reduction when the sequence is ordered and conditions under which they are achieved are derived. Theorems are presented showing the difference between the average entropy of the individual order statistics and the entropy of a member of the original independent identically distributed (i.i.d.) population. Finally, the entropies of the individual order statistics are studied when the probability density function (p.d.f.) of the original i.i.d. sequence is symmetric about its mean. (English)
Keyword: unified $(r,s)$-entropy measure
Keyword: order statistics
Keyword: Shannon entropy
Keyword: logistic distribution.
MSC: 62B10
MSC: 62G30
MSC: 94A15
idZBL: Zbl 0813.62004
idMR: MR1288146
DOI: 10.21136/AM.1994.134262
.
Date available: 2009-09-22T17:44:49Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134262
.
Reference: [1] S. Arimoto: Information-theoric consideration on estimation problems.Information and Control 19 (1971), 181–194. MR 0309224, 10.1016/S0019-9958(71)90065-9
Reference: [2] N. Balakrishnan and A. C. Cohen: Order statistics and inference, Estimation methods.Academic Press, 1991. MR 1084812
Reference: [3] I. S. Gradshteyn and I. M. Ryzhik: Table of integrals, series and products.Academic Press, 1980. MR 1398882
Reference: [4] I. Havrda and F. Charvat: Quantification method of classification processes: concept of structural $\alpha $-entropy.Kybernetika 3 (1967), 30–35. MR 0209067
Reference: [5] A. Renyi: On measures of entropy and information.Proc. 4th Berkeley Symp. Math. Statist. and Prob. 1 (1961), 547–561. Zbl 0106.33001, MR 0132570
Reference: [6] C. E. Shannon: A mathematical theory of communications.Bell. Syst. Tech. J. 27 (1948), 379–423. MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x
Reference: [7] B. D. Sharma and D. P. Mittal: New nonadditive measures of entropy for discrete probability distribution.J. Math. Sci. 10 (1975), 28–40. MR 0539493
Reference: [8] I. J. Taneja: On generalized information measures and their applications.Adv. Elect. and Elect. Phis. 76 (1989), 327–413. 10.1016/S0065-2539(08)60580-6
Reference: [9] K. M. Wong and S. Chen: The entropy of ordered sequences and order statistics.IEEE Transactions on Information Theory 36(2) (1990), 276–284. MR 1052779, 10.1109/18.52473
.

Files

Files Size Format View
AplMat_39-1994-5_1.pdf 2.356Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo