Previous |  Up |  Next


Title: Preconditioning of conjugate gradients by multigrid solver (English)
Author: Křížková, Jitka
Author: Vaněk, Petr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940
Volume: 39
Issue: 5
Year: 1994
Pages: 357-364
Summary lang: English
Category: math
Summary: Solving a system of linear algebraic equations by the preconditioned conjugate gradient method requires to solve an auxiliary system of linear algebraic equations in each step. In this paper instead of solving the auxiliary system one iteration of the two level method for the original system is done. (English)
Keyword: conjugate gradient method
Keyword: preconditioning
Keyword: multigrid method
MSC: 65F10
MSC: 65F35
idZBL: Zbl 0815.65042
idMR: MR1288148
Date available: 2009-09-22T17:45:01Z
Last updated: 2012-05-06
Stable URL:
Reference: [lit1] J. Mandel: Adaptive Iterative Solvers in Finite Elements.(to appear).
Reference: [lit2] J. Mandel: Balancing Domain Decomposition.Communications in numerical methods in engineering, vol. 9 (1993). Zbl 1071.65558, MR 1208381
Reference: [lit3] G. Luenberger: Introduction to Linear and Nonlinear Programming.Addison-Wesley, New York, 1973. Zbl 0297.90044
Reference: [lit4] R. Blaheta: Iterative Methods for Numerical Solving of the Boundary Value Problems of Elasticity.Thesis, Ostrava, 1989. (Czech)
Reference: [lit5] P. Vaněk: Acceleration of Algebraic Multigrid Method.Proceedings of the IXth Summer School SANM, 1991.
Reference: [lit6] W. Hackbusch: Multigrid Methods and Applications.Springer Verlag, 1985. MR 0814495
Reference: [lit7] S. Míka, P. Vaněk: The Acceleration of the Convergence of a Two-level Algebraic Algorithm by Aggregation in Smoothing Process.Applications of Math. 37 (1992), no. 5. MR 1175929
Reference: [lit8] O. Axelsson, V.A. Barker: Finite Element Solution of Boundary Value Problems.Academic Press, 1984. MR 0758437


Files Size Format View
AplMat_39-1994-5_3.pdf 634.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo