Previous |  Up |  Next

Article

Title: A posteriori error estimates for parabolic differential systems solved by the finite element method of lines (English)
Author: Segeth, Karel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 6
Year: 1994
Pages: 415-443
Summary lang: English
.
Category: math
.
Summary: Systems of parabolic differential equations are studied in the paper. Two a posteriori error estimates for the approximate solution obtained by the finite element method of lines are presented. A statement on the rate of convergence of the approximation of error by estimator to the error is proved. (English)
Keyword: a posteriori error estimate
Keyword: system of parabolic equations
Keyword: finite element method
Keyword: method of lines
MSC: 35K15
MSC: 65M15
MSC: 65M20
idZBL: Zbl 0822.65068
idMR: MR1298731
DOI: 10.21136/AM.1994.134269
.
Date available: 2009-09-22T17:45:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134269
.
Reference: [1] S. Adjerid, J.E. Flaherty: A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations.SIAM J. Numer. Anal. 23 (1986), 778–796. MR 0849282, 10.1137/0723050
Reference: [2] S. Adjerid, J.E. Flaherty, Y.J. Wang: A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems.Numer. Math. 65 (1993), 1–21. MR 1217436, 10.1007/BF01385737
Reference: [3] I. Babuška, W.C. Rheinboldt: A posteriori error estimates for the finite element method.Internat. J. Numer. Methods Engrg. 12 (1978), 1597–1615. 10.1002/nme.1620121010
Reference: [4] M. Bieterman, I. Babuška: The finite element method for parabolic equations I, II.Numer. Math. 40 (1982), 339–371, 373–406. 10.1007/BF01396451
Reference: [5] F.R. Gantmacher: Matrix Theory.Moskva, Nauka, 1966. (Russian)
Reference: [6] A.C. Hindmarsh: LSODE and LSODI, two new initial value ordinary differential equation solvers.ACM SIGNUM Newsletter 15 (1980), 10–11. 10.1145/1218052.1218054
Reference: [7] J.T. Oden, G.F. Carey: Finite Elements: Mathematical Aspects, Vol. 4.Englewood Cliffs, NJ, Prentice-Hall, 1983. MR 0767804
Reference: [8] L.R. Petzold: A Description of DDASSL: A Differential/Algebraic System Solver.Sandia Report No. Sand 82-8637, Livermore, CA, Sandia National Laboratory, 1982. MR 0751605
Reference: [9] B. Szabo, I. Babuška: Finite Element Analysis.New York, J. Wiley & Sons, 1991. MR 1164869
Reference: [10] V. Thomée: Negative norm estimates and superconvergence in Galerkin methods for parabolic problems.Math. Comp. 34 (1980), 93–113. MR 0551292, 10.2307/2006222
Reference: [11] R. Wait, A.R. Mitchell: Finite Element Analysis and Applications.Chichester, J. Wiley & Sons, 1985. MR 0817440
.

Files

Files Size Format View
AplMat_39-1994-6_2.pdf 2.831Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo