Previous |  Up |  Next

Article

Title: Shape optimization by means of the penalty method with extrapolation (English)
Author: Hlaváček, Ivan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 6
Year: 1994
Pages: 449-477
Summary lang: English
.
Category: math
.
Summary: A model shape optimal design in $\mathbb{R}^2$ is solved by means of the penalty method with extrapolation, which enables to obtain high order approximations of both the state function and the boundary flux, thus offering a reliable gradient for the sensitivity analysis. Convergence of the proposed method is proved for certain subsequences of approximate solutions. (English)
Keyword: shape optimization
Keyword: penalty method
Keyword: extrapolation
Keyword: finite elements
MSC: 49J20
MSC: 49M30
MSC: 65K10
MSC: 65N30
idZBL: Zbl 0826.65056
idMR: MR1298733
DOI: 10.21136/AM.1994.134271
.
Date available: 2009-09-22T17:45:46Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134271
.
Reference: [1] I. Babuška: The finite element method with penalty.Math. Comp. 27 (1973), 221–228. MR 0351118, 10.1090/S0025-5718-1973-0351118-5
Reference: [2] I. Babuška: Numerical solution of partial differential equations.Preprint, March 1973, Univ. of Maryland. MR 0366062
Reference: [3] P.G. Ciarlet: Basic error estimates for elliptic problems.In: Handbook of Numer. Anal., vol. II, Finite element methods (Part 1), ed. by P.G. Ciarlet and J.L. Lions, Elsevier, (North-Holland), 1991. Zbl 0875.65086, MR 1115237
Reference: [4] S. Conte, C. de Boor: Elementary numerical analysis; an algorithmic approach.McGraw-Hill, New York, 1972. MR 0202267
Reference: [5] P. Grisvard: Boundary value problems in non-smooth domains.Univ. of Maryland, Lecture Notes #19, 1980.
Reference: [6] P. Grisvard: Singularities in boundary value problems.RMA 22, Res. Notes in Appl. Math., Masson, Paris, Springer-Verlag, Berlin, 1992. Zbl 0778.93007, MR 1173209
Reference: [7] E.J. Haug, K.K. Choi, V. Komkov: Design sensitivity analysis of structural systems.Academic Press, Orlando-London, 1986. MR 0860040
Reference: [8] I. Hlaváček: Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions.Apl. Mat. 35 (1990), 405–417. MR 1072609
Reference: [9] J. Chleboun, R. Mäkinen: Primal formulation of an elliptic equation in smooth optimal shape problems. Advances in Math. Sci. Appl...
Reference: [10] J. Kadlec: On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set.Czechoslovak Math. J. 14 (1964), no. 89, 386–393.. Zbl 0166.37703, MR 0170088
Reference: [11] J.T. King: New error bounds for the penalty method and extrapolation.Numer. Math. 23 (1974), 153–165. Zbl 0272.65092, MR 0400742, 10.1007/BF01459948
Reference: [12] J.T. King, S.M. Serbin: Boundary flux estimates for elliptic problems by the perturbed variational method.Computing, 16 (1976), 339–347. MR 0418485, 10.1007/BF02252082
Reference: [13] J.T. King, S.M. Serbin: Computational experiments and techniques for the penalty method with extrapolation.Math. Comp. 32 (1978), 111–126. MR 0471866, 10.1090/S0025-5718-1978-0471866-0
Reference: [14] J.L. Lions, E. Magenes: Problèmes aux limites non homogènes et applications.vol. 1, Dunod, Paris, 1968. MR 0247243
Reference: [15] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [16] M. Zlámal: Curved elements in the finite element method  I.SIAM J. Num. Anal. 10 (1973), 229–240. MR 0395263, 10.1137/0710022
.

Files

Files Size Format View
AplMat_39-1994-6_4.pdf 3.117Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo