Previous |  Up |  Next

Article

Title: Optimal design problems for a dynamic viscoelastic plate. I. Short memory material (English)
Author: Bock, Igor
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 40
Issue: 4
Year: 1995
Pages: 285-304
Summary lang: English
.
Category: math
.
Summary: We deal with an optimal control problem with respect to a variable thickness for a dynamic viscoelastic plate with velocity constraints. The state problem has the form of a pseudohyperbolic variational inequality. The existence and uniqueness theorem for the state problem and the existence of an optimal thickness function are proved. (English)
Keyword: optimal control
Keyword: viscoelastic plate
Keyword: variable thickness
Keyword: pseudohyperbolic variational inequality
Keyword: penalization
MSC: 35L85
MSC: 49J20
MSC: 49J40
MSC: 73F15
MSC: 74Hxx
idZBL: Zbl 0845.49001
idMR: MR1331919
DOI: 10.21136/AM.1995.134295
.
Date available: 2009-09-22T17:48:22Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134295
.
Reference: [1] V. Barbu, T. Precupanu: Convexity and optimization.Sitjhoff-Noordhoff, Amsterdam, 1978.
Reference: [2] I. Bock, J. Lovíšek: Optimal control of a viscoelastic plate bending.Mathematische Nachrichten 125 (1986), 135–151. MR 0847355, 10.1002/mana.19861250109
Reference: [3] I. Bock, J. Lovíšek: An optimal control problem for a pseudoparabolic variational inequality.Applications of Mathematics 37 (1992), 62–80. MR 1152158
Reference: [4] H. Brézis: Problémes uniltéraux.Journal de Math. Pures et Appliqué 51 (1968), 1–168.
Reference: [5] H. Brézis: Operateurs maximaux monotones et semigroupes.North Holland, Amsterdam, 1973.
Reference: [6] J. Brilla: Linear viscoelastic plate bending analysis.Proc. XI-th Congress of Applied Mechanics, München, 1964.
Reference: [7] H. Gajewski, K. Gröger, K. Zacharias: Nichlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie, Berlin, 1974. MR 0636412
Reference: [8] J. Nečas, I. Hlaváček: Mathematical theory of elastic and elastoplastic bodies.An introduction, Elsevier, Amsterdam, 1981.
Reference: [9] O.R. Ržanicyn: Teoria polzučesti.Strojizdat, Moskva, 1968.
Reference: [10] D. Tiba: Some remarks on the control of the vibrating string with an obstacle.Revue Roumaine de Math. Pures, Appl. 29 (1984), 899–906. MR 0780134
Reference: [11] D. Tiba: Optimal control of nonsmooth distributed parameter systems.Springer-Verlag, Berlin, 1990. Zbl 0732.49002, MR 1090951
.

Files

Files Size Format View
AplMat_40-1995-4_2.pdf 1.673Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo