Previous |  Up |  Next


kinematics; characteristics; enveloped surfaces
Double Points on Characteristics. A fixed surface $\Phi $ of a moving space $\Sigma $ will envelope a surface of the fixed space $\Sigma ^{\prime }$, if we move $\Sigma $ with respect to $\Sigma ^{\prime }$. In the general case at each moment of the one-parameter motion there exists a curve $c$ on $\Phi $, along which the position of $\Phi $ and the enveloped surface are in contact. In the paper we study the interesting special case, where $c$ has some double point $P\in \Phi $. This depends on relations between differential geometric properties in the neighbourhood of $P$ of the moved surface and the instantaneous motion of the one-parameter motion. These properties are characterized in this paper. Then some further kinematic results for the characterized motions are shown.
[1] O. Bottema, B. Roth: Theoretical Kinematics. North-Holland, Amsterdam, 1979. MR 0533960
[2] H. Brauner: Lehrbuch der Konstruktiven Geometrie. Springer, Wien-New York, 1986. MR 0833284 | Zbl 0581.51018
[3] K.H. Hunt: Screw Systems in Spatial Kinematics. MMERS3, Dept. of Mech. Eng., Monash University, 1970.
[4] A. Karger, J. Novák: Space Kinematics and Lie Groups. Gordon and Breach, New York, 1985. MR 0801394
[5] E. Kruppa: Analytische und konstruktive Differentialgeometrie. Springer, Wien, 1957. MR 0086326 | Zbl 0077.15401
[6] O. Röschel: Drehflächen zweiter Ordnung durch einen Kegelschnitt. Studia Sci. Math. Hung. 29 (1994), 379–386. MR 1304891
[7] O. Röschel: Eine interessante Famile von Drehquadriken. Grazer Math. Ber. 313 (1991), 45–56. MR 1143619
Partner of
EuDML logo