Previous |  Up |  Next


Reissner-Mindlin plate model; mixed-interpolated elements
Hard clamped and hard simply supported elastic plate is considered. The mixed finite element analysis combined with some interpolation, proposed by Brezzi, Fortin and Stenberg, is extended to the case of variable thickness and anisotropic material.
[1] Brezzi, F. – Bathe, K. J. – Fortin, M.: Mixed-interpolated elements for Reissner–Mindlin plates. Internat. J. Numer. Methods Engrg. 28 (1989), 1787–1801. DOI 10.1002/nme.1620280806 | MR 1008138
[2] Brezzi, F. – Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, Berlin, 1991. MR 1115205
[3] Brezzi, F. – Fortin, M. – Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner–Mindlin plates. Math. Models and Meth. in Appl. Sci 1 (1991), 125–151. DOI 10.1142/S0218202591000083 | MR 1115287
[4] Brezzi, F. – Fortin, M.: Numerical approximation of Mindlin-Reissner plates. Math. Comp. 47 (1986), 151–158. DOI 10.1090/S0025-5718-1986-0842127-7 | MR 0842127
[5] Girault, V. – Raviart, P. A.: Finite element methods for Navier-Stokes equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986. MR 0851383
[6] Nečas, J. – Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam, 1981.
[7] Ciarlet, P.G.: Basic error estimates for elliptic problems. Handbook of Numer. Anal., P. G. Ciarlet and J. L. Lions vol. II (eds.), North-Holland, Amsterdam, 1991, pp. 17–352. MR 1115237 | Zbl 0875.65086
Partner of
EuDML logo