Previous |  Up |  Next

Article

Title: Singular perturbations in optimal control problem with application to nonlinear structural analysis (English)
Author: Lovíšek, Ján
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 4
Year: 1996
Pages: 299-320
Summary lang: English
.
Category: math
.
Summary: This paper concerns an optimal control problem of elliptic singular perturbations in variational inequalities (with controls appearing in coefficients, right hand sides and convex sets of states as well). The existence of an optimal control is verified. Applications to the optimal control of an elasto-plastic plate with a small rigidity and with an obstacle are presented. For elasto-plastic plates with a moving part of the boundary a primal finite element model is applied and a convergence result is obtained. (English)
Keyword: optimal control problem
Keyword: singular perturbations in variational inequalities
Keyword: convex set
Keyword: elasto-plastic plate
Keyword: small rigidity
Keyword: obstacle
MSC: 35J85
MSC: 49A27
MSC: 49A29
MSC: 49B34
MSC: 49J40
MSC: 74K20
idZBL: Zbl 0870.49003
idMR: MR1395688
DOI: 10.21136/AM.1996.134328
.
Date available: 2009-09-22T17:51:51Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134328
.
Reference: [1] V. Barbu: Optimal Control of Variational Inequalities. Pitman Advanced Publishing Program, Boston-London.1987. MR 0742624
Reference: [2] H. Brézis et G. Stampacchia: Sur la régularité de la solution d’inéquations elliptiques.Bull. Soc. Math. Franç. 96 (1968), 153–180. MR 0239302
Reference: [3] W. Eckhaus and J.K. Moet: Asymptotic solution in free boundary problems of singularly perturbed elliptic variational inequalities.Differential Equations and Applications, W. Eckhaus and E.M. Jaegar (eds.), North-Holland Publishing Company, Amsterdam, 1978. MR 0516169
Reference: [4] W.M. Greenlee: Singular perturbations of eigenvalues.Arch. Rat. Mech. Anal. 34 (1969), 143–164. MR 0249797, 10.1007/BF00247463
Reference: [5] R. Glowinski: Numerical Methods for Nonlinear Variational Problems.Springer Verlag, New York, 1984. Zbl 0536.65054, MR 0737005
Reference: [6] D. Huet: Singular perturbations of elliptic problems.Annali Math. Pura Appl. 95 (1973), 77–114. Zbl 0279.35010, MR 0328289, 10.1007/BF02410710
Reference: [7] J. Haslinger, P. Neittaanmäki: Finite Element Approximation for Optimal Shape Design. Theory and application.J. Wiley, New York, 1988. MR 0982710
Reference: [8] C. Johnson: Numerical Solution of Partial Differential Equations by the Finite Element Method.Cambridge Univ. Press, Cambridge, 1987. Zbl 0628.65098, MR 0925005
Reference: [9] A. Langenbach: Monotone Potenzial Operatoren in Theorie und Anwendungen.Deutscher V. der Wissenschaften, Berlin, 1976.
Reference: [10] J.L. Lions: Pertubations singulières dans les problèmes aux limites et en contrôle optimal. Lect. Notes in Math. 323.Springer Verlag, Berlin, 1973. MR 0600331, 10.1007/BFb0060528
Reference: [11] J.L. Lions: Singular perturbation and singular layers in variational inequalities.Contribution to Nonlinear Analysis, E.H. Zarantonello (ed.), Acad. Press, New York, 1971. MR 0390457
Reference: [12] R. Mignot and J.P. Puel: Optimal control in some variational inequalities.SIAM J. Control Optimiz. 22 (1984), 466–476. MR 0739836, 10.1137/0322028
Reference: [13] U. Mosco: Convergence of convex sets and of solutions of variational inequalities.Advances of Math. 3 (1969), 510–585. Zbl 0192.49101, MR 0298508, 10.1016/0001-8708(69)90009-7
Reference: [14] J.F. Rodrigues: Obstacle Problems in Mathematical Physics.North Holland Math. Studies, Amsterdam, 1986. MR 0880369
.

Files

Files Size Format View
AplMat_41-1996-4_4.pdf 2.361Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo