Previous |  Up |  Next

Article

Title: A direct global superconvergence analysis for Sobolev and viscoelasticity type equations (English)
Author: Lin, Qun
Author: Zhang, Shuhua
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 1
Year: 1997
Pages: 23-34
Summary lang: English
.
Category: math
.
Summary: In this paper we study the finite element approximations to the Sobolev and viscoelasticity type equations and present a direct analysis for global superconvergence for these problems, without using Ritz projection or its modified forms. (English)
Keyword: Sobolev and viscoelasticity type equations
Keyword: global superconvergence
Keyword: direct analysis
Keyword: finite element method
Keyword: evolution equation
MSC: 35G10
MSC: 35K25
MSC: 65B05
MSC: 65M12
MSC: 65M60
MSC: 65N30
MSC: 74Hxx
idZBL: Zbl 0902.65034
idMR: MR1426678
DOI: 10.1023/A:1022288409629
.
Date available: 2009-09-22T17:53:18Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134342
.
Reference: [1] D. Arnold, J. Douglas, V. Thomée: Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable.Math. Comp. 36 (1981), 53–63. MR 0595041, 10.1090/S0025-5718-1981-0595041-4
Reference: [2] R. Ewing: The approximation of certain parabolic equations backward in time by Sobolev equations.SIAM J. Math. Anal. 6 (1975), 283–294. Zbl 0292.35004, MR 0361447, 10.1137/0506029
Reference: [3] R. Ewing: Numerical solution of Sobolev partial differential eqautions.SIAM J. Numer. Anal. 12 (1975), 345–363. MR 0395265, 10.1137/0712028
Reference: [4] W. Ford: Galerkin approximation to nonlinear pseudoparabolic partial differential equation.Aequationes Math. 14 (1976), 271–291. MR 0408270, 10.1007/BF01835978
Reference: [5] W. Ford, T. Ting: Stability and convergence of difference approximations to pseudoparabolic partial equations.Math. Comp. 27 (1973), 737–743. MR 0366052, 10.1090/S0025-5718-1973-0366052-4
Reference: [6] W. Ford, T. Ting: Uniform error estimates for difference approximations to nonlinear pseudoparabolic partial differential equations.SIAM J. Numer. Anal. 11 (1974), 155–169. MR 0423833, 10.1137/0711016
Reference: [7] Q. Lin: A new observation in FEM.Proc. Syst. Sci. & Syst. Eng. (1991), Great Wall (H.K.) Culture Publish Co., 389–391.
Reference: [8] Q. Lin, N. Yan, A. Zhou: A rectangle test for interpolated finite elements, ibid.217–229.
Reference: [9] Q. Lin, S. Zhang: An immediate analysis for global superconvergence for integrodifferential equations.Appl. Math. 42 (1997), 1–21. MR 1426677, 10.1023/A:1022264125558
Reference: [10] Y. Lin: Galerkin methods for nonlinear Sobolev equations.Aequations Math. 40 (1990), 54–56. Zbl 0734.65078, MR 1055190, 10.1007/BF02112280
Reference: [11] Y. Lin, T. Zhang: Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions.J. Math. Anal. & Appl. 165 (1992), 180–191. MR 1151067, 10.1016/0022-247X(92)90074-N
Reference: [12] Y. Lin, V. Thomée, L. Wahlbin: Ritz-Volterra projection on finite element spaces and applications to integrodifferential and related equations.SIAM J. Numer. Anal. 28 (1991), 1047–1070. MR 1111453, 10.1137/0728056
Reference: [13] M. Nakao: Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension.Numer. Math. 47 (1985), 139–157. Zbl 0575.65112, MR 0797883, 10.1007/BF01389881
Reference: [14] L. Wahlbin: Error estimates for a Galerkin method for a class of model equations for long waves.Numer. Math. 23 (1975), 289–303. Zbl 0283.65052, MR 0388799, 10.1007/BF01438256
Reference: [15] M. Wheeler: A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723–759. MR 0351124, 10.1137/0710062
Reference: [16] Q. Zhu, Q. Lin: Superconvergence Theory of the Finite Element Methods.Hunan Science Press, 1990.
.

Files

Files Size Format View
AplMat_42-1997-1_2.pdf 301.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo