Previous |  Up |  Next


divergence-free functions; finite elements; internal approximation; stream function.; Fourier transform
The space of divergence-free functions with vanishing normal flux on the boundary is approximated by subspaces of finite elements that have the same property. The easiest way of generating basis functions in these subspaces is considered.
[1] V. Girault, P. A. Raviart: Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Berlin, 1979. MR 0548867
[2] I. Hlaváček, M. Křížek: Internal finite element approximations in the dual variational methods for second order elliptic problems with curved boundaries. Apl. Mat. 29 (1984), 52–69. MR 0729953
[3] M. Křížek, P. Neittaanmäki: Internal FE approximation of spaces of divergence-free functions in 3-dimensional domains. Internat. J. Numer. Methods Fluids 6 (1986), 811–817. DOI 10.1002/fld.1650061104 | MR 0865678
[4] M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications. Longman Scientific & Technical, Harlow, 1990. MR 1066462
[5] J. C. Nedelec: Eléments finis mixtes incompressibles pour l’equation de Stokes dans $^3$. Numer. Math. 39 (1982), 97–112. DOI 10.1007/BF01399314 | MR 0664539
[6] R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam, 1979. MR 0603444 | Zbl 0454.35073
[7] V. S. Vladimirov: Equations of Mathematical Physics. Marcel Dekker, New York, 1971. MR 0268497 | Zbl 0231.35002
Partner of
EuDML logo