Previous |  Up |  Next

Article

Title: The second order optimality conditions for nonlinear mathematical programming with $C^{1,1}$ data (English)
Author: Liu, Liping
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 4
Year: 1997
Pages: 311-320
Summary lang: English
.
Category: math
.
Summary: To find nonlinear minimization problems are considered and standard $C^2$-regularity assumptions on the criterion function and constrained functions are reduced to $C^{1,1}$-regularity. With the aid of the generalized second order directional derivative for $C^{1,1}$ real-valued functions, a new second order necessary optimality condition and a new second order sufficient optimality condition for these problems are derived. (English)
Keyword: nonlinear programming
Keyword: constrained problems
Keyword: $C^{1;1}$ functions
Keyword: second order conditions
MSC: 49J45
MSC: 90C30
idZBL: Zbl 0903.90152
idMR: MR1453935
DOI: 10.1023/A:1023068513188
.
Date available: 2009-09-22T17:55:19Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134361
.
Reference: [1] M. Avriel: Nonlinear Programming: Analysis and Methods.Prentice-Hall, New Jersey, 1976. Zbl 0361.90035, MR 0489892
Reference: [2] M. S. Bazzaraa and C. M. Shetty: Foundations of Optimization.Springer-Verlag, Berlin, Heidelberg, New York, 1976, pp. 73-80. MR 0429122
Reference: [3] A. Ben-Tal: Second order and related extremality conditions in nonlinear programming.J. Optim. Theory Appl. 31 (1980), 143–165. Zbl 0416.90062, MR 0600379, 10.1007/BF00934107
Reference: [4] A. Ben-Tal: Second order theory of extremum problems.in: Fiacoo, A. V. and Kortanek, K. eds., Extremal methods and system analysis, Springer, Berlin (1980), 336–356. Zbl 0432.90085, MR 0563871
Reference: [5] A. Ben-Tal and J. Zowe: A unified theory of first and second order conditions for extremum problems in topological vector space.Math. Programming Stud. 19 (1982), 39–76. MR 0669725, 10.1007/BFb0120982
Reference: [6] R. W. Chancy: Second order necessary conditions in constrained semismooth optimization.SIAM J. Control Optim. 25 (1987), 1072–1081. MR 0893999, 10.1137/0325059
Reference: [7] F. H. Clarke: Optimization and Nonsmooth Analysis.John Wiley and Sons, New York, 1983. Zbl 0582.49001, MR 0709590
Reference: [8] J. B. Hiriart-Urruty, J. J. Strodiot and V. H. Nguyen: Generalized Hessian matrix and second-order optimality conditions for problems with $C^{1,1}$ data.Appl. Math. Optim. 11 (1984), 43–56. MR 0726975, 10.1007/BF01442169
Reference: [9] K. H. Hoffmann and H. F. Kornstaedt: Higher order necessary conditions in abstract mathematical programming.J. Optim. Theory Appl. 26 (1978), 533–569. MR 0526652, 10.1007/BF00933151
Reference: [10] A. D. Ioffe: Necessary and sufficient conditions for a local minimum 3: Second order conditions and augmented duality.SIAM J. Control Optim. 17 (1979), 266–288. Zbl 0417.49029, MR 0525027, 10.1137/0317021
Reference: [11] M. Křížek and P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications.Longman, 1990. MR 1066462
Reference: [12] J. Liu and B-G. Liu: On second order sufficient conditions in smooth nonlinear programming.In: Proc. Conf. Recent trends in optimization theory and applications, World Sci. Publ. Comp., 1995, 239–254.
Reference: [13] L. Liu: The second-order conditions of nondominated solutions for $C^{1,1}$ generalized multiobjective mathematical programming.J. Systems Sci. Math. Sci. 4 (1991), 128–138. MR 1119288
Reference: [14] L. Liu: The second order conditions for $C^{1,1}$ nonlinear mathematical programming.Proc. Prague Math. Conf. 96, Math. Inst., Acad. Sci., Prague, 1996, 153–158.
Reference: [15] J. J. Maurer and J. Zowe: First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems.Math. Programming 16 (1979), 98–110. MR 0517762, 10.1007/BF01582096
Reference: [16] G. P. McCormick: Second order conditions for constrained minima.SIAM. J. Appl. Math. 15 (1967), 641–652. Zbl 0166.15601, MR 0216866, 10.1137/0115056
Reference: [17] S. Saks: Theory of the Integral.Hafner Pulishing Co., New York, 1937. Zbl 0017.30004
.

Files

Files Size Format View
AplMat_42-1997-4_5.pdf 247.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo