Previous |  Up |  Next

Article

Title: Spatial patterns for reaction-diffusion systems with conditions described by inclusions (English)
Author: Eisner, Jan
Author: Kučera, Milan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 6
Year: 1997
Pages: 421-449
Summary lang: English
.
Category: math
.
Summary: We consider a reaction-diffusion system of the activator-inhibitor type with boundary conditions given by inclusions. We show that there exists a bifurcation point at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from the branch of trivial solutions. This bifurcation point lies in the domain of stability of the trivial solution to the same system with Dirichlet and Neumann boundary conditions, where a bifurcation of this classical problem is excluded. (English)
Keyword: reaction-diffusion systems
Keyword: variational inequalities
Keyword: inclusions
Keyword: bifurcation
Keyword: stationary solutions
Keyword: spatial patterns
MSC: 35B32
MSC: 35J85
MSC: 35K57
MSC: 35K58
MSC: 35K85
MSC: 47H04
MSC: 47H15
MSC: 47N20
idZBL: Zbl 0940.35030
idMR: MR1475051
DOI: 10.1023/A:1022203129542
.
Date available: 2009-09-22T17:56:05Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134368
.
Reference: [1] E. N. Dancer: On the structure of solutions of non-linear eigenvalue problem.Indiana Univ. Math. J. 23 (1974), 1069–1076. MR 0348567, 10.1512/iumj.1974.23.23087
Reference: [2] G. Duvaut, J. L. Lions: Les Inéquations en Mechanique et en Physique.Dunod, Paris, 1972. MR 0464857
Reference: [3] P. Drábek, M. Kučera, M. Míková: Bifurcation points of reaction-diffusion systems with unilateral conditions.Czech. Math. J. 35 (1985), 639–660. MR 0809047
Reference: [4] P. Drábek, M. Kučera: Reaction-diffusion systems: Destabilizing effect of unilateral conditions.Nonlinear Analysis, Theory, Methods, Applications 12 (1988), 1173-1192. MR 0969497
Reference: [5] J. Eisner: Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions.(to appear). Zbl 0977.35020, MR 1802290
Reference: [6] S. Fučík, A. Kufner: Nonlinear Differential Equations.Elsevier, Amsterdam, 1980. MR 0558764
Reference: [7] A. Gierer, H. Meinhardt: A theory of biological pattern formation.Kybernetik 12 (1972), 30–3. 10.1007/BF00289234
Reference: [8] H. Kielhöfer: Stability and semilinear evolution equations in Hilbert space.Arch. Rat. Mech. Analysis 57 (1974), 150–165. MR 0442405, 10.1007/BF00248417
Reference: [9] M. Kučera: Bifurcation points of variational inequalities.Czechoslovak Math. J. 32 (1982), 208–226. MR 0654057
Reference: [10] M. Kučera: Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities.Czechoslovak Math. J. 47 (122) (1997), 469–486. MR 1461426, 10.1023/A:1022411501260
Reference: [11] M. Kučera: Bifurcation of solutions to reaction-diffusion system with conditions described by inequalities and inclusions.Proceedings of the Second World Congress of Nonlinear Analysts, Athens, 1996. MR 1602910
Reference: [12] M. Kučera, M. Bosák: Bifurcation for quasi-variational inequalities of reaction-diffusion type.SAACM 3 (1993), 111–127.
Reference: [13] M. Kučera: Bifurcation of solutions to reaction-diffusion systems with unilateral conditions.Navier-Stokes Equations and related Topics, by A. Sequeira (eds.), Plenum Press, New York, 1995, pp. 307–322. MR 1373224
Reference: [14] M. Kučera: Reaction-diffusion systems: Bifurcation and stabilizing effect of conditions given by inclusions.Nonlin. Anal., T.M.A. 27 (1996), 249–260. MR 1391435, 10.1016/0362-546X(95)00055-Z
Reference: [15] M. Mimura, Y. Nishiura, M. Yamaguti: Some diffusive prey and predator systems and their bifurcation problems.Ann. N.Y. Acad. Sci. 316 (1979), 490–521. MR 0556853, 10.1111/j.1749-6632.1979.tb29492.x
Reference: [16] J. D. Murray: Mathematical Biology 19.Springer-Verlag, 1993. MR 1239892
Reference: [17] Y. Nishiura: Global structure of bifurcating solutions of some reaction-diffusion systems..SIAM J. Math. Analysis 13 (1982), 555–593. Zbl 0505.76103, MR 0661590, 10.1137/0513037
Reference: [18] L. Nirenberg: Topics in Nonlinear Functional Analysis.Academic Press, New York, 1974. Zbl 0286.47037, MR 0488102
Reference: [19] P. Quittner: Spectral analysis of variational inequalities.Commentat. Math. Univ. Carol. 27 (1986), 605–629. MR 0873631
Reference: [20] P. Quittner: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type.J. reine angew. Math. 380 (1987), 1–13. Zbl 0617.35053, MR 0916198
Reference: [21] P. H. Rabinowitz: Some global results for nonlinear eigenvalue problems.J. Funct. Anal. 7 (1987), 487–513. MR 0301587, 10.1016/0022-1236(71)90030-9
Reference: [22] D. H. Sattinger: Topics in Stability and Bifurcation Theory.Lecture Notes in Mathematics 309, Springer-Verlag, Berlin-Heidelberg-New York, 1973. Zbl 0248.35003, MR 0463624
Reference: [23] A. M. Turing: The chemical basis of morphogenesis.Phil. Trans. Roy. Soc. (B) (1952), 37–72.
.

Files

Files Size Format View
AplMat_42-1997-6_3.pdf 514.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo