Previous |  Up |  Next

Article

Keywords:
multivalued operators; highly oscillatory operators; Reuss-Voigt-Wiener bounds; Hashin-Shtrikman bounds
Summary:
In this paper we study the behaviour of maximal monotone multivalued highly oscillatory operators. We construct Reuss-Voigt-Wiener and Hashin-Shtrikmann type bounds for the minimal sections of G-limits of multivalued operators by using variational convergence and convex analysis.
References:
[1] G. Allaire, R. V. Kohn: Optimal bounds on the effective behaviour of a mixture of two well-ordered elastic materials. Q. Appl. Math. 51 (1993), 643–674. MR 1247433
[2] H. Attouch: Variational Convergence for Functions and Operators. Pitman Publ., 1984. MR 0773850 | Zbl 0561.49012
[3] M. Avellaneda: Optimal bounds and microgeometries for elastic two-phase composites. SIAM J. Appl. Math. 47 (1987), 1216–1228. DOI 10.1137/0147082 | MR 0916238 | Zbl 0632.73079
[4] V. Chiado-Piat, G. Dal Maso and A. Defranceschi: G-convergence of monotone operators. Ann. Inst. H. Poincaré, Anal. Non Lineare 7 (1990), 123–160. MR 1065871
[5] V. Chiado-Piat, A. Defranceschi: Homogenization of monotone operators. Nonlinear Anal. 14, 717–732. DOI 10.1016/0362-546X(90)90102-M | MR 1049117
[6] G. Dal Maso: An introduction to $\Gamma $-convergence. Birkhäuser Boston, 1993. MR 1201152 | Zbl 0816.49001
[7] A. Defranceschi: G-convergence of cyclically monotone operators. Asymptotic Anal. 1 (1989), 21–37. MR 0991415 | Zbl 0681.47023
[8] G. Francfort, F. Murat: Homogenization and optimal bounds in linear elasticity. Arch. Rat. Mech. Anal. 94 (1986), 307–334. DOI 10.1007/BF00280908 | MR 0846892
[9] K. Golden, G. Papanicolaou: Bounds for effective parameters of heterogeneous media by analytic continuation. Comm. Math. Phys. (1983), 473–491. DOI 10.1007/BF01216179 | MR 0719428
[10] Z. Hashin: Analysis of composite materials. A survey. J. Appl. Mech. 50 (1983), 483–505. DOI 10.1115/1.3167081 | Zbl 0542.73092
[11] Z. Hashin, S. Shtrikman: A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids. 10 (1962), 343–352. DOI 10.1016/0022-5096(62)90005-4 | MR 0147032
[12] Z. Hashin, S. Shtrikman: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids. 11 (1963), 127–140. DOI 10.1016/0022-5096(63)90060-7 | MR 0159459
[13] R. Hill: Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11 (1963), 357–372. DOI 10.1016/0022-5096(63)90036-X | Zbl 0114.15804
[14] R. V. Kohn, R. Lipton: Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials. Arch. Rat. Mech. Anal. 102 (1988), 331–350. MR 0946964
[15] D. Lukkassen, L. E. Persson and P. Wall: On some sharp bounds for the homogenized p-Poisson equation. Applicable Analysis 58 (1995), 123–135. DOI 10.1080/00036819508840366 | MR 1384593
[16] K. A. Lurie, A. V. Cherkaev: Exact estimates of the conductivity of composites formed by two isotropically conducting media taken in prescribed proportion. Proc. Roy. Soc. Edinburgh 99A (1984), 71–87. MR 0781086
[17] G. Milton: On characterizing the set of possible effective tensors of composites: The variational method and the translation method. Comm. Pure Appl. Math. 43 (1990), 63–125. DOI 10.1002/cpa.3160430104 | MR 1024190 | Zbl 0751.73041
[18] P. Ponte Castaneda: The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39 (1991), 45–71. DOI 10.1016/0022-5096(91)90030-R | MR 1085622 | Zbl 0734.73052
[19] P. Ponte Castaneda: New variational principles in plasticity and their application to composite materials. J. Mech. Phys. Solids 40 (1992), 1757–1788. DOI 10.1016/0022-5096(92)90050-C | MR 1190849 | Zbl 0764.73103
[20] P. Suquet: Plasticite et homogeneisation. These, Paris VI (1982).
[21] P. Suquet: Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys Solids 41 (1993), 981–1002. DOI 10.1016/0022-5096(93)90051-G | MR 1220788 | Zbl 0773.73063
[22] N. Svanstedt: Bounds for homogenized constitutive laws in non-linear elasticity and plasticity (in preparation).
[23] D. R. S. Talbot, J. R. Willis: Some simple explicit bounds for the overall behaviour of nonlinear composites. Int. J. Solids Struct. 29 (1992), 1981–1987. MR 1173106
[24] D. R. S. Talbot, J. R. Willis: Upper and lower bound for the overall properties of a nonlinear composite dielectric I. Random microgeometry. Proc. Royal Soc. London A 447 (1994) (to appear), 365–384.
[25] L. Tartar: Estimations fines des coefficients homogenises. Ennio De Giorgi Colloquium, P. Kree (ed.), Pitman Publ., London, 1985, pp. 168–187. MR 0909716
[26] L. Tartar: H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh 115A (1990), 193–230. MR 1069518
[27] S. Torquato: Random Heterogeneous media: Microstructures and improved bounds on effective properties. Appl. Mech. Rev. 44 (1991), 37–76. DOI 10.1115/1.3119494 | MR 1092035
[28] L. J. Walpole: On bounds for the overall elastic moduli of anisotropic composites. J. Mech. Phys. Solids 14 (1966), 151–162. DOI 10.1016/0022-5096(66)90035-4
[29] J. R. Willis: Variational and related methods for the overall properties of composites. Advances in Applied Mechanics 21 (1981), 1–78. DOI 10.1016/S0065-2156(08)70330-2 | MR 0706965 | Zbl 0476.73053
[30] J. R. Willis: The overall elastic response of composite materials. J. Appl. Mech. 50 (1983), 1202–1209. DOI 10.1115/1.3167202 | Zbl 0539.73003
[31] J. R. Willis: The structure of overall constitutive relations for a class of nonlinear composites. IMA J. appl. Math. 43 (1989), 231–242. DOI 10.1093/imamat/43.3.231 | MR 1042634 | Zbl 0695.73005
[32] E. Zeidler: Nonlinear Functional Analysis and its Applications, Volume III. Springer-Verlag, 1990.
Partner of
EuDML logo