Previous |  Up |  Next

Article

Title: Reliable solution of an elasto-plastic Reissner-Mindlin beam for Hencky's model with uncertain yield function (English)
Author: Hlaváček, Ivan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 3
Year: 1998
Pages: 223-237
Summary lang: English
.
Category: math
.
Summary: We apply the method of reliable solutions to the bending problem for an elasto-plastic beam, considering the yield function of the von Mises type with uncertain coefficients. The compatibility method is used to find the moments and shear forces. Then we solve a maximization problem for these quantities with respect to the uncertain input data. (English)
Keyword: elasto-plastic beams
Keyword: Hencky’s model of plasticity
Keyword: Mindlin-Timoshenko beam
Keyword: uncertain data
MSC: 49A29
MSC: 73E99
MSC: 73K05
MSC: 74C05
MSC: 74K10
MSC: 74P10
idZBL: Zbl 1042.74533
idMR: MR1620616
DOI: 10.1023/A:1023228608356
.
Date available: 2009-09-22T17:57:55Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134386
.
Reference: [1] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems.North-Holland, Amsterdam, 1976. MR 0463994
Reference: [2] Hlaváček, I.: Reliable solutions of elliptic boundary problems with respect to uncertain data. Proceedings of the WCNA-96.Nonlinear Analysis, Theory, Methods & Applications 30 (1997), 3879–3890. MR 1602891
Reference: [3] Hlaváček, I.: Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients.J. Math. Appl. 212 (1997), 452–466. MR 1464890
Reference: [4] Hlaváček, I.: Reliable solutions of problems in the deformation theory of plasticity with respect to uncertain material function.Appl. Math. 41 (1996), 447–466. MR 1415251
Reference: [5] Hlaváček, I.: Reliable solution of an elasto-plastic torsion problem.(to appear). MR 1857675
Reference: [6] Hlaváček, I.: Reliable solution of a Signorini contact problem with friction, considering uncertain data.(to appear). MR 1731015
Reference: [7] Hlaváček, I., Lovíšek, J.: Optimal design of an elastic or elasto-plastic beam with unilateral elastic foundation and rigid supports.Z. Angew. Math. Mech. 72 (1992), 29–43. MR 1148885, 10.1002/zamm.19920720104
Reference: [8] Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [9] Lagnese, J. E., Lions, J.-L.: Modelling Analysis and Control of Thin Plates.Masson, Paris and Springer-Verlag, Berlin, 1989. MR 0953313
Reference: [10] Neal, B. G.: Structural Theorems and Their Applications.Pergamon Press, Oxford, 1964. Zbl 0142.23603
Reference: [11] Rakowski, J.: The interpretation of the shear locking in beam elements.Comput. & Structures 37 (1990), 769-776. 10.1016/0045-7949(90)90106-C
.

Files

Files Size Format View
AplMat_43-1998-3_4.pdf 368.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo