Previous |  Up |  Next

Article

Title: Using successive approximations for improving the convergence of GMRES method (English)
Author: Zítko, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 43
Issue: 5
Year: 1998
Pages: 321-350
Summary lang: English
.
Category: math
.
Summary: In this paper, our attention is concentrated on the GMRES method for the solution of the system $(I-T)x=b$ of linear algebraic equations with a nonsymmetric matrix. We perform $m$ pre-iterations $y_{l+1}=Ty_l+b $ before starting GMRES and put $y_m $ for the initial approximation in GMRES. We derive an upper estimate for the norm of the error vector in dependence on the $m$th powers of eigenvalues of the matrix $T$. Further we study under what eigenvalues lay-out this upper estimate is the best one. The estimate shows and numerical experiments verify that it is advisable to perform pre-iterations before starting GMRES as they require fewer arithmetic operations than GMRES. Towards the end of the paper we present a numerical experiment for a system obtained by the finite difference approximation of convection-diffusion equations. (English)
Keyword: GMRES
Keyword: iterative method
Keyword: numerical experiments
Keyword: solution of discretized equations
MSC: 65F10
MSC: 65N22
MSC: 65N35
idZBL: Zbl 0938.65060
idMR: MR1644136
DOI: 10.1023/A:1022291601664
.
Date available: 2009-09-22T17:58:35Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134392
.
Reference: [A 87] O. Axelson: A generalized conjugate gradient, least square methods.Numer. Math. 51 (1987), 209–227. MR 0890033, 10.1007/BF01396750
Reference: [G-L] C. Brezinski, M.R. Zaglia: Extrapolation Methods—Theory and Practice.North Holland, 1991. MR 1140920
Reference: [E 82] H.C. Elman: Iterative Methods for Large Sparse Nonsymmetric Systems of Linear Equations.Ph. D. thesis, Computer Science Dept., Yale Univ., New Haven, CT, 1982.
Reference: [G-L] G.H. Golub, Ch.F. Van Loan: Matrix Computation.The John Hopkins University Press, Baltimore, 1984.
Reference: [F-F] D.K.Fadeev, V.N.Fadeeva:: Computational Methods of Linear Algebra.San Francisco: Freeman 1963. Zbl 0755.65029, MR 0158519
Reference: [F-G-N 91] R.W. Freund, G.H. Golub, N.M. Nachtigal: Iterative solution of linear systems.Acta Numerica (1991), 57–100. MR 1165723
Reference: [H-Y] L.A. Hageman, D.M. Young: Applied Iterative Method.New York, Academic Press, 1981. MR 0630192
Reference: [Ho] A.S. Householder: The Theory of Matrices in Numerical Analysis.Blaisdell Publishing Company, 1964. Zbl 0161.12101, MR 0175290
Reference: [J-Y] K.C. Jea, D.M. Young: Generalized conjugate gradient acceleration of nonsymmetrizable iterative methods.Linear Algebra Appl. 34 (1980), 159–194. MR 0591431, 10.1016/0024-3795(80)90165-2
Reference: [K-H] : Iterative Methods for Large Linear Systems.Papers from a conference held Oct. 19–21, 1988 at the Center for Numerical Analysis of the University of Texas at Austin, Edited by D.R. Kincaid, L.J. Hayes (eds.), Academic Press, 1989. Zbl 0703.68010, MR 1038083
Reference: [L 52] C. Lanczos: Solution of systems of linear equations by minimized iterations.J. Res. Nat. Bur. Stand. 49 (1952), 33–53. MR 0051583, 10.6028/jres.049.006
Reference: [O-R] J. M. Ortega, W. C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, 1970. MR 0273810
Reference: [Sa 81] Y. Saad: Krylov subspace methods for solving large unsymmetric linear systems.Math Comput. 37 (1981), 105–126. Zbl 0474.65019, MR 0616364, 10.1090/S0025-5718-1981-0616364-6
Reference: [Sa 84] Y. Saad: Practical use of some Krylov subspace methods for solving indefinite and nonsymmetric linear systems.SIAM J. Sci. Stat. Comput. 5 (1984), 203–227. Zbl 0539.65012, MR 0731892, 10.1137/0905015
Reference: [S-S 86] Y. Saad, M.H. Schultz: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM J. Sci. Stat. Comput. 7 (1986), 856–869. MR 0848568, 10.1137/0907058
Reference: [Si-F-Sm] A. Sidi, W.F. Ford, D.A. Smith: Acceleration of convergence of vector sequences.SIAM J. Numer. Anal. 23 (1986), 178–196. MR 0821914, 10.1137/0723013
Reference: [Si 86] A. Sidi: Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms.SIAM J. Numer. Anal. 23 (1986), 197–209. Zbl 0612.65001, MR 0821915, 10.1137/0723014
Reference: [Si 88] A. Sidi: Extrapolation vs. projection methods for linear systems of equations.J. Comput. Appl. Math. 22 (1988), 71–88. Zbl 0646.65031, MR 0948887, 10.1016/0377-0427(88)90289-0
Reference: [St 83] J. Stoer: Solution of large linear systems of equations by conjugate gradient type methods., Mathematical Programming—The State of the Art, A. Bachem, M. Grötschel and B. Korte (eds.), Springer (Berlin), 1983, pp. 540–565. Zbl 0553.65022, MR 0717414
Reference: [V] R.L. Varga: Matrix Iterative Analysis.Prentice-Hall Englewood Clifs, New Jersey, 1962. MR 0158502
Reference: [V-V 93] H.A. Van der Vorst, C. Vuik: The superlinear convergence behaviour of GMRES.J. Comput. Appl. Math. 48 (1993), 327–341. MR 1252545, 10.1016/0377-0427(93)90028-A
Reference: [Y] D.M. Young: Iterative Solution of Large Linear Systems.Academic Press, New York-London, 1971. Zbl 0231.65034, MR 0305568
Reference: [W 81] J. Wimp: Sequence Transformations and their Aapplications.Academic Press, 1981. MR 0615250
Reference: [Zi 83] J. Zítko: Improving the convergence of iterative methods.Apl. Mat. 28 (1983), 215–229. MR 0701740
Reference: [Zi 84] J. Zítko: Convergence of extrapolation coefficients.Apl. Mat. 29 (1984), 114–133. MR 0738497
Reference: [Zi 94] J. Zítko: The behaviour of the error vector using the GMRES method.Technical report No 4/94, Prague, 1994, pp. 1–27.
Reference: [Zi 96] J. Zítko: Combining the preconditioned conjugate gradient method and a matrix iterative method.Appl. Math. 41 (1996), 19–39. MR 1365137
Reference: [Zi1 96] J. Zítko: Combining the GMRES and a matrix iterative method.ZAMM (Proceedings of ICIAM/GAMM 95) Vol. 76, 1996, pp. 595–596.
Reference: [Zi2 96] J. Zítko: Improving the convergence of GMRES using preconditioning and pre-iterations.Proceedings of the conference “Prague Mathematical Conference 1996”, 1996, pp. 377–382.
Reference: [Zi 97] J. Zítko: Behaviour of GMRES iterations using preconditioning and pre-iterations.ZAMM (Proceedings of GAMM 96) Vol. 77, 1997, pp. 693–694.
.

Files

Files Size Format View
AplMat_43-1998-5_1.pdf 538.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo