Previous |  Up |  Next

Article

Title: Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications (English)
Author: Ženíšek, Alexander
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 3
Year: 1999
Pages: 169-241
Summary lang: English
.
Category: math
.
Summary: Making use of a surface integral defined without use of the partition of unity, trace theorems and the Gauss-Ostrogradskij theorem are proved in the case of three-dimensional domains $\Omega$ with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces $H^{1,p}()$ $(1\le p<)$. The paper is a generalization of the previous author’s paper which is devoted to the line integral. (English)
Keyword: variational problems
Keyword: surface integral
Keyword: trace theorems
Keyword: Gauss-Ostrogradskij theorem
MSC: 35J20
MSC: 46E35
MSC: 65N99
idZBL: Zbl 1060.46511
idMR: MR1688569
DOI: 10.1023/A:1023097018446
.
Date available: 2009-09-22T18:00:31Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134410
.
Reference: [Fi1] G.M. Fichtengolc: Differential and Integral Calculus I.Gostechizdat, Moscow, 1951. (Russian)
Reference: [Fi1g] G.M.Fichtenholz: Differential- und Integralrechnung I.VEB Deutscher Verlag der Wissenschaften, Berlin, 1968. Zbl 0164.06002, MR 0238635
Reference: [Fi3] G.M. Fichtengolc: Differential and Integral Calculus III.Gostechizdat, Moscow, 1960. (Russian)
Reference: [Fi3g] G.M.Fichtenholz: Differential- und Integralrechnung III.VEB Deutscher Verlag der Wissenschaften, Berlin, 1968. Zbl 0167.32501
Reference: [Kř] M. Křížek: An equilibrium finite element method in three-dimensional elasticity.Apl.Mat. 27 (1982), 46–75. MR 0640139
Reference: [KJF] A. Kufner, O. John, S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [Ne] J. Nečas: Les Méthodes Directes en Théorie des Equations Elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [NH] J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [PF] Zs. Pach, T. Frey: Vector- and Tensoranalysis.Müszaki könyvkiadó, Budapest, 1960. (Hungarian)
Reference: [Sa] S. Saks: Theory of the Integral.Hafner Publ. Comp., New York, 1937. Zbl 0017.30004, MR 0167578
Reference: [Si] R. Sikorski: Differential and Integral Calculus (Functions of more variables).Państwowe wydawnictwo naukowe, Warsaw, 1969. (Polish) MR 0592423
Reference: [ŠT] J. Škrášek, Z. Tichý: Foundations of Applied Mathematics II.SNTL, Prague, 1986. (Czech)
Reference: [Že] A. Ženíšek: Green’s theorem from the viewpoint of applications.Appl. Math. 44 (1999), 55–80. MR 1666842, 10.1023/A:1022272204023
.

Files

Files Size Format View
AplMat_44-1999-3_1.pdf 731.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo