Previous |  Up |  Next

Article

Title: Contact shape optimization based on the reciprocal variational formulation (English)
Author: Haslinger, Jaroslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 5
Year: 1999
Pages: 321-358
Summary lang: English
.
Category: math
.
Summary: The paper deals with a class of optimal shape design problems for elastic bodies unilaterally supported by a rigid foundation. Cost and constraint functionals defining the problem depend on contact stresses, i.e. their control is of primal interest. To this end, the so-called reciprocal variational formulation of contact problems making it possible to approximate directly the contact stresses is used. The existence and approximation results are established. The sensitivity analysis is carried out. (English)
Keyword: shape optimization
Keyword: contact problems
Keyword: reciprocal variational formulation
Keyword: sensitivity analysis
MSC: 49A29
MSC: 49D29
MSC: 49Q10
MSC: 65K10
MSC: 73K25
MSC: 74M15
MSC: 74P10
idZBL: Zbl 1060.49509
idMR: MR1709662
DOI: 10.1023/A:1023013327165
.
Date available: 2009-09-22T18:01:12Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134416
.
Reference: [Benedict, Taylor, 1981] Benedict, R. L. and Taylor, J. E.: Optimal design for elastic bodies in contact.Optimization of Distributed-Parameter Structures, Haug, E. J. and Céa, J. (eds.), Sijthoff and Noordhoff aan den Rijn, Holland, 1981, pp. 1553–1599.
Reference: [Correa, Seeger, 1984] Correa, R. and Seeger, A.: Directional derivatives in minimax problems.Numer. Funct. Anal. and Optimiz. 7 (1984), 145–156. MR 0767379, 10.1080/01630568508816186
Reference: [Ekeland, Temam, 1976] Ekeland, I. and Temam, R.: Convex Analysis and Variational Problems.North-Holland, Amsterdam, 1976. MR 0463994
Reference: [Hlaváček, Haslinger, Nečas, Lovíšek, 1988] Hlaváček, I., Haslinger, J., Nečas, J. and Lovíšek, J.: Numerical Solution of Variational Inequalities.Springer Series in Applied Mathematical Sciences 66, Springer-Verlag, New York, 1988.
Reference: [Haslinger, Klarbring, 1993] Haslinger, J. and Klarbring, A.: Shape optimization in unilateral contact problems using generalized reciprocal energy as objective functional.Nonlinear Analysis, Methods & Appl. 21 (1993), 815–834. MR 1249662
Reference: [Haslinger, Neittaanmäki, 1988] Haslinger, J. and Neittaanmäki, P.: Finite Element Approximation for Optimal Shape Design: Theory and Applications.J. Wiley, Chichester-New York, 1988. MR 0982710
Reference: [Haslinger, Neittaanmäki, 1996] Haslinger, J. and Neittaanmäki, P.: Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd Edition.J. Wiley, Chichester-New York, 1996. MR 1419500
Reference: [Haslinger, Panagiotopoulos, 1984] Haslinger, J. and Panagiotopoulos, P. D.: Approximation of contact problems with friction by reciprocal variational formulation.Proc. Roy. Soc. Edingburgh 98A (1984), 365–383. MR 0768357
Reference: [Kikuchi, Oden, 1988] Kikuchi, N. and Oden, J. T.: Contact Problems in Elasticity: A study of variational inequalities and finite element methods.SIAM, Philadelphia, 1988. MR 0961258
Reference: [Klarbring, Haslinger, 1993] Klarbring, A. and Haslinger, J.: On almost constant contact stress distributions by shape optimization.Struct. Opt. 5 (1993), 213–216. 10.1007/BF01743581
Reference: [Pironneau, 1984] Pironneau, O.: Optimal Shape Design for Elliptic Systems.Springer series in Computational Physics, Springer-Verlag, New York, 1984. Zbl 0534.49001, MR 0725856
Reference: [Sokolowski, Zolesio, 1992] Sokolowski, J. and Zolesio, J. P.: Introduction to Shape Optimization.Springer-Verlag, 1992. MR 1215733
.

Files

Files Size Format View
AplMat_44-1999-5_1.pdf 542.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo