Previous |  Up |  Next

Article

Title: A comment on the Jäger-Kačur's linearization scheme for strongly nonlinear parabolic equations (English)
Author: Vala, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 6
Year: 1999
Pages: 481-496
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to demonstrate how the variational equations from can be formulated and solved in some abstract Banach spaces without any a priori construction of special linearization schemes. This should be useful e.g. in the analysis of heat conduction problems and modelling of flow in porous media. (English)
Keyword: PDE’s of evolution
Keyword: method of Rothe
MSC: 35K22
MSC: 35K55
MSC: 65J10
MSC: 65M70
idZBL: Zbl 1060.65655
idMR: MR1727984
DOI: 10.1023/A:1022229022563
.
Date available: 2009-09-22T18:02:08Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134423
.
Reference: [1] L. Čermák: Solution of the problems of Stephan type with convection.Proceedings of the 8-th Seminary on Programs and Algorithms of Numerical Mathematics in Janov nad Nisou (organized by the Mathematical Institute of the Academy of Sciences of the Czech Republic in Prague, in Czech), 1996, pp. 42–49.
Reference: [2] J. Dalík, J. Daněček, J. Vala: Numerical solution of the Kiessl model.Appl. Math., to appear. MR 1738893
Reference: [3] J. Franců : Monotone operators – a survey directed to differential equations.Appl. Math. 35 (1991), 257–300. MR 1065003
Reference: [4] J. Franců : Weakly continuous operators – applications to differential equations.Appl. Math. 39 (1994), 45–56. MR 1254746
Reference: [5] S. Fučík, A. Kufner: Nonlinear Differential Equations.Elsevier, Amsterdam, 1980. MR 0558764
Reference: [6] H. Gajewski, K. Gröger, K. Zacharias: Nonlinear Operator Equations and Operator Differential Equations.Akademie Verlag, Berlin, 1974. (German) MR 0636412
Reference: [7] W. Jäger: On solutions to convection-diffusion equations with degenerate diffusion.PDE’98 Conference in Prague, Book of Abstracts, Appendix, 1998, p. 2.
Reference: [8] W. Jäger, J. Kačur: Solution of porous medium type systems by linear approximation schemes.Numerische Mathematik 60 (1991), 407–427. MR 1137200, 10.1007/BF01385729
Reference: [9] J. Kačur : Applicaton of relaxation schemes and the method of characteristics to degenerate convection-diffusion problems by a linear approximation scheme.PDE’98 Conference in Prague, Book of Abstracts, 1998, p. 22.
Reference: [10] J. Kačur: Method of Rothe in Evolution Equations.Teubner Verlag, Leipzig, 1985. MR 0834176
Reference: [11] J. Kačur: Solution to strongly nonlinear parabolic problem by a linear approximation scheme.Preprint M2-96, Comenius University (Faculty of Mathematics and Physics), Bratislava, 1996. MR 1670689
Reference: [12] A. Kufner, O. John, S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [13] V. G. Maz’ya : Sobolev Spaces.Leningrad University Press, Leningrad (St. Petersburg), 1985. (Russian) MR 0817985
Reference: [14] J. Nagy, E. Nováková, M. Vacek: Lebesgue Measure and Integral.SNTL, Prague, 1985. (Czech)
Reference: [15] K. Yosida: Functional Analysis.Mir, Moscow, 1967. (Russian) Zbl 0152.32102, MR 0225130
.

Files

Files Size Format View
AplMat_44-1999-6_7.pdf 347.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo