Previous |  Up |  Next

Article

Title: A survey of results on nonlinear Venttsel problems (English)
Author: Apushkinskaya, D. E.
Author: Nazarov, A. I.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 1
Year: 2000
Pages: 69-80
Summary lang: English
.
Category: math
.
Summary: We review the recent results for boundary value problems with boundary conditions given by second-order integral-differential operators. Particular attention has been paid to nonlinear problems (without integral terms in the boundary conditions) for elliptic and parabolic equations. For these problems we formulate some statements concerning a priori estimates and the existence theorems in Sobolev and Hölder spaces. (English)
Keyword: Venttsel boundary conditions
Keyword: elliptic equations
Keyword: parabolic equations
Keyword: a priori estimates
Keyword: existence theorems
Keyword: boundary value problems
MSC: 35B05
MSC: 35B45
MSC: 35K60
idZBL: Zbl 1058.35118
idMR: MR1738896
DOI: 10.1023/A:1022288717033
.
Date available: 2009-09-22T18:02:41Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134429
.
Reference: [1] D. E. Apushkinskaya: An estimate for the maximum of solutions of parabolic equations with the Venttsel condition.Vestnik Leningrad Univ. Mat. Mekh. Astronom. (1991), 3–12. MR 1166371
Reference: [2] D. E. Apushkinskaya, A. I. Nazarov: Gradient estimates for solutions of stationary degenerate Venttsel problems I.Research rep. no. MRR 058–97, Austral. Nat. Univ., Centre for Math. Anal. (1997).
Reference: [3] D. E. Apushkinskaya, A. I. Nazarov: Gradient estimates for solutions of stationary degenerate Venttsel problems II.Research rep. no. MRR 019–98, Austral. Nat. Univ., Centre for Math. Anal. (1998).
Reference: [4] D. E. Apushkinskaya, A. I. Nazarov: Gradient estimates for solutions of stationary degenerate Venttsel problems.Probl. Mat. Anal. 18 (1998), 43–69.
Reference: [5] D. E. Apushkinskaya, A. I. Nazarov: Hölder estimates of solutions to degenerate Venttsel boundary value problems for parabolic and elliptic equations of nondivergent form.Probl. Mat. Anal. 17 (1997), 3–18.
Reference: [6] D. E. Apushkinskaya, A. I. Nazarov: Hölder estimates of solutions to initial-boundary value problems for parabolic equations of nondivergent form with Wentzel (Venttsel) boundary condition.Amer. Math. Soc. Transl. (2) 64 (1995), 1–13. MR 1334136
Reference: [7] D. E. Apushkinskaya, A. I. Nazarov: On the quasilinear stationary Venttsel problem.Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 221 (1995), 20–29. MR 1359746
Reference: [8] D. E. Apushkinskaya, A. I. Nazarov: The initial-boundary value problem for nondivergent parabolic equation with Venttsel boundary condition.Algebra Anal. 6 (1994), 1–29. MR 1322117
Reference: [9] D. E. Apushkinskaya, A. I. Nazarov: The nonstationary Venttsel problem with quadratic growth with respect to the gradient.Probl. Mat. Anal. 15 (1995), 33–46. MR 1420673
Reference: [10] J. R. Cannon, G. H. Meyer: On diffusion in a fractured medium.SIAM J. Appl. Math. 3 (1971), 434–448. 10.1137/0120047
Reference: [11] E. I. Galakhov, A. L. Skubachevskii: On shrinking nonnegative semigroups with nonlocal conditions.Mat. Sb. 165(207) (1998), 45–75. MR 1616432
Reference: [12] N. Ikeda, S. Watanabe: Stochastic Differential Equations and Diffusion Processes.(1981), North-Holland, Amsterdam-New York, Kodansha, Tokyo. MR 0637061
Reference: [13] P. Korman: Existence of periodic solutions for a class of nonlinear problems.Nonlinear Anal. 7 (1983), 873–879. Zbl 0523.35006, MR 0709040, 10.1016/0362-546X(83)90063-9
Reference: [14] P. Korman: Existence of solutions for a class of semilinear noncoercive problems.Nonlinear Anal. 10 (1986), 1471–1476. Zbl 0621.35008, MR 0869554, 10.1016/0362-546X(86)90116-1
Reference: [15] O. A. Ladyzhenskaya, N. N. Uraltseva: A survey of results on the solvability of boundary value problems for uniformly elliptic and parabolic second order quasilinear equations having unbounded singularities.Uspekhi Mat. Nauk 41 (1986), 59–83. MR 0878325
Reference: [16] K. Lemrabet: Ventcel’ boundary value problem in a non-smooth domain.C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 531–534. MR 0792383
Reference: [17] G. M. Lieberman: Second Order Parabolic Differential Equations.World Scientific, Singapore-New Jersey-London-Hong Kong, 1996. Zbl 0884.35001, MR 1465184
Reference: [18] G. M. Lieberman, N. S. Trudinger: Nonlinear oblique boundary value problems for nonlinear elliptic equations.Trans. Am. Math. Soc. 295 (1986), 509–545. MR 0833695, 10.1090/S0002-9947-1986-0833695-6
Reference: [19] V. V. Lukyanov, A. I. Nazarov: A solution of Venttsel problems for the Laplacian and the Helmholtz equation by iterated potentials.Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 250 (1998).
Reference: [20] Y. Luo: An Aleksandrov-Bakel’man type maximum principle and applications.J. Diff. Eq. 101 (2) (1993), 213–231. MR 1204327, 10.1006/jdeq.1993.1011
Reference: [21] Y. Luo: Quasilinear second order elliptic equations with elliptic Venttsel boundary conditions.Nonlinear Anal. 16 (1991), 761–769.
Reference: [22] Y. Luo, N. S. Trudinger: Linear second order elliptic equations with Venttsel boundary conditions.Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 193–207. MR 1121663
Reference: [23] A. I. Nazarov: On the estimates of the Hölder constants for solutions of the oblique derivative problem for a parabolic equation.Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987), 130–131. MR 0918945
Reference: [24] A. I. Nazarov: Interpolation of linear spaces and maximum estimates for solutions of parabolic equations.Part. Diff. Eq., Acad. Nauk SSSR, Siberian Dep. Math. Inst., Novosibirsk, 1987, pp. 50–72. MR 0994027
Reference: [25] M. Shinbrot: Water waves over periodic bottoms in three dimensions.J. Inst. Math. Applic. 25 (1980), 367–385. Zbl 0441.76009, MR 0578084, 10.1093/imamat/25.4.367
Reference: [26] K. S. Tulenbaev, N. N. Uraltseva: Nonlinear boundary value problem for elliptic equations in general form.Part. Diff. Eq., Acad. Nauk SSSR, Siberian Dep. Math. Inst., Novosibirsk, 1987, pp. 95–112. MR 0994029
Reference: [27] A. D. Venttsel: On boundary conditions for multidimensional diffusion processes.Teor. Veroyatnost. i Primenen. 4 (1959), 172–185. Zbl 0089.13404
Reference: [28] S. Watanabe: Construction of diffusion processes with Venttsel boundary conditions by means of Poisson point processes of Brownian excursions.Probability theory, Banach center Publ., vol. 5, PWN, Warsaw, 1979, pp. 255–271. MR 0561485
.

Files

Files Size Format View
AplMat_45-2000-1_5.pdf 363.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo