Title:
|
A survey of results on nonlinear Venttsel problems (English) |
Author:
|
Apushkinskaya, D. E. |
Author:
|
Nazarov, A. I. |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
45 |
Issue:
|
1 |
Year:
|
2000 |
Pages:
|
69-80 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We review the recent results for boundary value problems with boundary conditions given by second-order integral-differential operators. Particular attention has been paid to nonlinear problems (without integral terms in the boundary conditions) for elliptic and parabolic equations. For these problems we formulate some statements concerning a priori estimates and the existence theorems in Sobolev and Hölder spaces. (English) |
Keyword:
|
Venttsel boundary conditions |
Keyword:
|
elliptic equations |
Keyword:
|
parabolic equations |
Keyword:
|
a priori estimates |
Keyword:
|
existence theorems |
Keyword:
|
boundary value problems |
MSC:
|
35B05 |
MSC:
|
35B45 |
MSC:
|
35K60 |
idZBL:
|
Zbl 1058.35118 |
idMR:
|
MR1738896 |
DOI:
|
10.1023/A:1022288717033 |
. |
Date available:
|
2009-09-22T18:02:41Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134429 |
. |
Reference:
|
[1] D. E. Apushkinskaya: An estimate for the maximum of solutions of parabolic equations with the Venttsel condition.Vestnik Leningrad Univ. Mat. Mekh. Astronom. (1991), 3–12. MR 1166371 |
Reference:
|
[2] D. E. Apushkinskaya, A. I. Nazarov: Gradient estimates for solutions of stationary degenerate Venttsel problems I.Research rep. no. MRR 058–97, Austral. Nat. Univ., Centre for Math. Anal. (1997). |
Reference:
|
[3] D. E. Apushkinskaya, A. I. Nazarov: Gradient estimates for solutions of stationary degenerate Venttsel problems II.Research rep. no. MRR 019–98, Austral. Nat. Univ., Centre for Math. Anal. (1998). |
Reference:
|
[4] D. E. Apushkinskaya, A. I. Nazarov: Gradient estimates for solutions of stationary degenerate Venttsel problems.Probl. Mat. Anal. 18 (1998), 43–69. |
Reference:
|
[5] D. E. Apushkinskaya, A. I. Nazarov: Hölder estimates of solutions to degenerate Venttsel boundary value problems for parabolic and elliptic equations of nondivergent form.Probl. Mat. Anal. 17 (1997), 3–18. |
Reference:
|
[6] D. E. Apushkinskaya, A. I. Nazarov: Hölder estimates of solutions to initial-boundary value problems for parabolic equations of nondivergent form with Wentzel (Venttsel) boundary condition.Amer. Math. Soc. Transl. (2) 64 (1995), 1–13. MR 1334136 |
Reference:
|
[7] D. E. Apushkinskaya, A. I. Nazarov: On the quasilinear stationary Venttsel problem.Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 221 (1995), 20–29. MR 1359746 |
Reference:
|
[8] D. E. Apushkinskaya, A. I. Nazarov: The initial-boundary value problem for nondivergent parabolic equation with Venttsel boundary condition.Algebra Anal. 6 (1994), 1–29. MR 1322117 |
Reference:
|
[9] D. E. Apushkinskaya, A. I. Nazarov: The nonstationary Venttsel problem with quadratic growth with respect to the gradient.Probl. Mat. Anal. 15 (1995), 33–46. MR 1420673 |
Reference:
|
[10] J. R. Cannon, G. H. Meyer: On diffusion in a fractured medium.SIAM J. Appl. Math. 3 (1971), 434–448. 10.1137/0120047 |
Reference:
|
[11] E. I. Galakhov, A. L. Skubachevskii: On shrinking nonnegative semigroups with nonlocal conditions.Mat. Sb. 165(207) (1998), 45–75. MR 1616432 |
Reference:
|
[12] N. Ikeda, S. Watanabe: Stochastic Differential Equations and Diffusion Processes.(1981), North-Holland, Amsterdam-New York, Kodansha, Tokyo. MR 0637061 |
Reference:
|
[13] P. Korman: Existence of periodic solutions for a class of nonlinear problems.Nonlinear Anal. 7 (1983), 873–879. Zbl 0523.35006, MR 0709040, 10.1016/0362-546X(83)90063-9 |
Reference:
|
[14] P. Korman: Existence of solutions for a class of semilinear noncoercive problems.Nonlinear Anal. 10 (1986), 1471–1476. Zbl 0621.35008, MR 0869554, 10.1016/0362-546X(86)90116-1 |
Reference:
|
[15] O. A. Ladyzhenskaya, N. N. Uraltseva: A survey of results on the solvability of boundary value problems for uniformly elliptic and parabolic second order quasilinear equations having unbounded singularities.Uspekhi Mat. Nauk 41 (1986), 59–83. MR 0878325 |
Reference:
|
[16] K. Lemrabet: Ventcel’ boundary value problem in a non-smooth domain.C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 531–534. MR 0792383 |
Reference:
|
[17] G. M. Lieberman: Second Order Parabolic Differential Equations.World Scientific, Singapore-New Jersey-London-Hong Kong, 1996. Zbl 0884.35001, MR 1465184 |
Reference:
|
[18] G. M. Lieberman, N. S. Trudinger: Nonlinear oblique boundary value problems for nonlinear elliptic equations.Trans. Am. Math. Soc. 295 (1986), 509–545. MR 0833695, 10.1090/S0002-9947-1986-0833695-6 |
Reference:
|
[19] V. V. Lukyanov, A. I. Nazarov: A solution of Venttsel problems for the Laplacian and the Helmholtz equation by iterated potentials.Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 250 (1998). |
Reference:
|
[20] Y. Luo: An Aleksandrov-Bakel’man type maximum principle and applications.J. Diff. Eq. 101 (2) (1993), 213–231. MR 1204327, 10.1006/jdeq.1993.1011 |
Reference:
|
[21] Y. Luo: Quasilinear second order elliptic equations with elliptic Venttsel boundary conditions.Nonlinear Anal. 16 (1991), 761–769. |
Reference:
|
[22] Y. Luo, N. S. Trudinger: Linear second order elliptic equations with Venttsel boundary conditions.Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 193–207. MR 1121663 |
Reference:
|
[23] A. I. Nazarov: On the estimates of the Hölder constants for solutions of the oblique derivative problem for a parabolic equation.Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987), 130–131. MR 0918945 |
Reference:
|
[24] A. I. Nazarov: Interpolation of linear spaces and maximum estimates for solutions of parabolic equations.Part. Diff. Eq., Acad. Nauk SSSR, Siberian Dep. Math. Inst., Novosibirsk, 1987, pp. 50–72. MR 0994027 |
Reference:
|
[25] M. Shinbrot: Water waves over periodic bottoms in three dimensions.J. Inst. Math. Applic. 25 (1980), 367–385. Zbl 0441.76009, MR 0578084, 10.1093/imamat/25.4.367 |
Reference:
|
[26] K. S. Tulenbaev, N. N. Uraltseva: Nonlinear boundary value problem for elliptic equations in general form.Part. Diff. Eq., Acad. Nauk SSSR, Siberian Dep. Math. Inst., Novosibirsk, 1987, pp. 95–112. MR 0994029 |
Reference:
|
[27] A. D. Venttsel: On boundary conditions for multidimensional diffusion processes.Teor. Veroyatnost. i Primenen. 4 (1959), 172–185. Zbl 0089.13404 |
Reference:
|
[28] S. Watanabe: Construction of diffusion processes with Venttsel boundary conditions by means of Poisson point processes of Brownian excursions.Probability theory, Banach center Publ., vol. 5, PWN, Warsaw, 1979, pp. 255–271. MR 0561485 |
. |