Previous |  Up |  Next

Article

Title: Singular limit of a transmission problem for the parabolic phase-field model (English)
Author: Schimperna, Giulio
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 3
Year: 2000
Pages: 217-238
Summary lang: English
.
Category: math
.
Summary: A transmission problem describing the thermal interchange between two regions occupied by possibly different fluids, which may present phase transitions, is studied in the framework of the Caginalp-Fix phase field model. Dirichlet (or Neumann) and Cauchy conditions are required. A regular solution is obtained by means of approximation techniques for parabolic systems. Then, an asymptotic study of the problem is carried out as the time relaxation parameter for the phase field tends to 0 in one of the domains. It is also proved that the limit formulation admits a unique solution in a suitable weak sense. (English)
Keyword: phase-field models
Keyword: maximal monotone operators
Keyword: transmission problems
Keyword: parabolic PDEs
MSC: 35B40
MSC: 35K55
MSC: 80A22
idZBL: Zbl 1058.35041
idMR: MR1757242
DOI: 10.1023/A:1023070928404
.
Date available: 2009-09-22T18:03:33Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134436
.
Reference: [1] C. Baiocchi: Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert.Ann. Mat. Pura Appl. IV, 76 (1967), 233–304. Zbl 0153.17202, MR 0223697, 10.1007/BF02412236
Reference: [2] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff, Leyden, 1976. Zbl 0328.47035, MR 0390843
Reference: [3] H. Brézis: Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert.North-Holland Math. Studies 5, North-Holland, Amsterdam, 1973. MR 0348562
Reference: [4] G. Caginalp: An analysis of a phase field model of a free boundary.Arch. Rational Mech. Anal. 92 (1986), 205–245. Zbl 0608.35080, MR 0816623, 10.1007/BF00254827
Reference: [5] P. Colli, G. Gilardi and M. Grasselli: Global smooth solution to the standard phase-field model with memory.Adv. Differential Eqations 2 (1997), 453–486. MR 1441852
Reference: [6] P. Colli, G. Gilardi and M. Grasselli: Well-posedness of the weak formulation for the phase-field model with memory.Adv. Differential Equations 2 (1997), 487–508. MR 1441853
Reference: [7] P. Colli, G. Gilardi and M. Grasselli: Asymptotic analysis of a phase-field model with memory for vanishing time relaxation.Hiroshima Math. J. 29 (1999), 117–143. MR 1679579, 10.32917/hmj/1206125157
Reference: [8] A. Damlamian, N. Kenmochi and N. Sato: Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation.Nonlinear Anal. 23 (1994), 115–142. MR 1288502, 10.1016/0362-546X(94)90255-0
Reference: [9] P. Fernandes, G. Gilardi: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions.Math. Models Methods Appl. Sci. 7 (1997), 957–991. MR 1479578, 10.1142/S0218202597000487
Reference: [10] G. J. Fix: Phase field models for free boundary problems.In: Free boundary problems: theory and applications; vol II, A. Fasano and M. Primicerio (eds.), Pitman Res. Notes Math. Ser. 79, Longman, London, 1983, pp. 580–589. Zbl 0518.35086
Reference: [11] L. D.  Landau, E. M. Lifshitz: Statistical Physics.Addison-Wesley Publishing, Reading, Massachusetts, 1958. MR 0136378
Reference: [12] J. L. Lions: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires.Dunod, Gauthier-Villars, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [13] O. Penrose, P. C. Fife: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions.Physica D 43 (1990), 44–62. MR 1060043, 10.1016/0167-2789(90)90015-H
Reference: [14] G. Savaré, A. Visintin: Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase.Atti Accad. Naz. Lincei Cl. Sci. Mat. Fis. Natur. Rend. Lincei IX 8 (1997), 49–89. MR 1484545
Reference: [15] G. Schimperna: Weak solution to a phase-field transmission problem in a concentrated capacity.Math. Methods Appl. Sci 22 (1999), 1235–1254. Zbl 0933.35198, MR 1710707, 10.1002/(SICI)1099-1476(19990925)22:14<1235::AID-MMA82>3.0.CO;2-W
Reference: [16] J. Simon: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl. IV 146 (1987), 65–96. MR 0916688
Reference: [17] A. Visintin: Stefan problem with phase relaxation.IMA J. Appl. Math. 34 (1985), . Zbl 0585.35053, MR 0804824
.

Files

Files Size Format View
AplMat_45-2000-3_4.pdf 423.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo