Previous |  Up |  Next

Article

Title: Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$ data (English)
Author: Liu, Liping
Author: Neittaanmäki, Pekka
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 45
Issue: 5
Year: 2000
Pages: 381-397
Summary lang: English
.
Category: math
.
Summary: We examine new second-order necessary conditions and sufficient conditions which characterize nondominated solutions of a generalized constrained multiobjective programming problem. The vector-valued criterion function as well as constraint functions are supposed to be from the class $C^{1,1}$. Second-order optimality conditions for local Pareto solutions are derived as a special case. (English)
Keyword: multiobjective programming
Keyword: nonsmooth constrained optimization
Keyword: second-order optimality conditions
Keyword: nondominated solutions
Keyword: local Pareto optimal solutions
MSC: 49J52
MSC: 90C29
MSC: 90C31
MSC: 90C46
idZBL: Zbl 0995.90085
idMR: MR1777017
DOI: 10.1023/A:1022272728208
.
Date available: 2009-09-22T18:04:37Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134446
.
Reference: [1] M. S. Bazaraa, C. M. Shetty: Foundations of Optimization.LN in Econom. and Math. Systems, vol. 122, Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 0429122
Reference: [2] A. Ben-Tal: Second-order and related extremality conditons in nonlinear programming.J. Optim. Theory Appl. 31 (1980), 143–165. MR 0600379, 10.1007/BF00934107
Reference: [3] A. Cambini, L. Martein and R. Cambini: A New Approach to Second Order Optimality Conditions in Vector Optimization.Advances in Multiple Objective and Goal Programming, LN in Econom. and Math. Systems, vol. 455, Springer, Berlin, 1997. MR 1487397
Reference: [4] J. B. Hiriart-Urruty, J. J. Strodiot and V. H. Nguyen: Generalized Hessian matrix and second-order optimality conditions for problems with $C^{1,1}$ data.Appl. Math. Optim. 11 (1984), 43–56. MR 0726975, 10.1007/BF01442169
Reference: [5] S. Huang: Second-order conditions for nondominated solution in generalized multiobjective mathematical programming.J. Systems Sci. Math. Sci. 5 (1985), 172–184. (Chinese) MR 0847811
Reference: [6] D. Klatte, K. Tammer: On second-order sufficient optimality conditions for $C^{1,1}$ optimization problems.Optimization 19 (1988), 169–179. MR 0948388, 10.1080/02331938808843333
Reference: [7] M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications.Longman, Harlow, 1990. MR 1066462
Reference: [8] L. Liu: The second-order conditions of nondominated solutions for $C^{1,1}$ generalized multiobjective mathematical programming.J. Systems Sci. Math. Sci. 4 (1991), 128–138. MR 1119288
Reference: [9] L. Liu: The second order conditions for $C^{1,1}$ nonlinear mathematical programming.pp. 153–158. MR 1703473
Reference: [10] L. Liu, M. Křížek: The second order optimality conditions for nonlinear mathematical programming with $C^{1,1}$ data.Appl. Math. 42 (1997), 311–320. MR 1453935, 10.1023/A:1023068513188
Reference: [11] D. T. Luc: Taylor’s formula for $C^{k,1}$ functions.SIAM J. Optim. 5 (1995), 659–669. MR 1344674, 10.1137/0805032
Reference: [12] Ch. Malivert: First and second order optimality conditions in vector optimization.Ann. Sci. Math. Québec 14 (1990), 65–79. MR 1070607
Reference: [13] G. P. McCormick: Second order conditions for constrained minima.SIAM. J. Appl. Math. 15 (1967), 641–652. Zbl 0166.15601, MR 0216866, 10.1137/0115056
Reference: [14] K. Miettinen: Nonlinear Multiobjective Optimization.Kluwer, Dordrecht, 1998. MR 1784937
Reference: [15] S. Sáks: Theory of the Integral.Hafner Publishing Co., New York, 1937.
Reference: [16] S. Wang: Second-order necessary and sufficient conditions in multiobjective programming.Numer. Funct. Anal. Optim. 12 (1991), 237–252. MR 1125051, 10.1080/01630569108816425
Reference: [17] D. E. Ward: Characterizations of strict local minima and necessary conditions for weak sharp minima.J. Optim. Theory Appl. 80 (1994), 551–571. Zbl 0797.90101, MR 1265176, 10.1007/BF02207780
Reference: [18] D. E. Ward: A comparison of second-order epiderivatives: calculus and optimality conditions.J. Math. Anal. Appl. 193 (1995), 465–482. MR 1338716, 10.1006/jmaa.1995.1247
Reference: [19] X. Q. Yang: Generalized second-order derivatives and optimality conditions.Nonlinear Anal. 23 (1994), 767–784. Zbl 0816.49008, MR 1298568, 10.1016/0362-546X(94)90218-6
Reference: [20] X. Q. Yang, V. Jeyakumar: Generalized second-order directional derivatives and optimization with $C^{1,1}$ functions.Optimization 26 (1992), 165–185. MR 1236606, 10.1080/02331939208843851
Reference: [21] X. Q. Yang, V. Jeyakumar: First and second-order optimality conditions for convex composite multiobjective optimization.J. Optim. Theory Appl. 95 (1997), 209–224. MR 1477357, 10.1023/A:1022695714596
Reference: [22] P. L. Yu: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjective.J. Optim. Theory Appl. 17 (1974), 320–377. MR 0381739
Reference: [23] P. L. Yu: Multiple-Criteria Decision Making: Concepts, Techniques and Extensions.Plenum Press, New York, 1985. MR 0812059
.

Files

Files Size Format View
AplMat_45-2000-5_4.pdf 381.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo