Previous |  Up |  Next

Article

Title: Boundary value problems for systems of functional differential equations (English)
Author: Jankowski, Tadeusz
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 47
Issue: 5
Year: 2002
Pages: 427-458
Summary lang: English
.
Category: math
.
Summary: Algorithms for finding an approximate solution of boundary value problems for systems of functional ordinary differential equations are studied. Sufficient conditions for consistency and convergence of these methods are given. In the last section, a construction of methods of arbitrary order is presented. (English)
Keyword: boundary value problems
Keyword: functional differential equations
Keyword: difference method
Keyword: consistency
Keyword: convergence
Keyword: methods of arbitrary order
MSC: 34A45
MSC: 34K10
MSC: 65L12
MSC: 65L20
idZBL: Zbl 1090.34583
idMR: MR1924679
DOI: 10.1023/A:1021714008658
.
Date available: 2009-09-22T18:11:11Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134506
.
Reference: [1] R. P. Agarwal: Difference Equations and Inequalities, Theory, Methods, and Applications.Marcel Dekker, Inc., New York, 1992. Zbl 0925.39001, MR 1155840
Reference: [2] U. M. Ascher, R. M. M. Mattheij and R. D. Russell: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations.Prentice Hall, New Jersey, 1988. MR 1000177
Reference: [3] S. Atdaev: On a method of two-sided approximations for a boundary value problem.Izv. Acad. Nauk. Turkm. Ser. Fiz.-Mat. Tekhn. Khim. Geol. Nauk, No. 1 (1985), 8–10. (Russian) Zbl 0649.34024, MR 0798362
Reference: [4] P. B. Bailey, L. F. Shampine and P. E. Waltman: Nonlinear Two Point Boundary Value Problems.Academic Press, New York and London, 1968. MR 0230967
Reference: [5] V. L. Bakke, Z. Jackiewicz: The numerical solution of boundary-value problems for differential equations with state dependent deviating arguments.Appl. Math. 34 (1989), 1–17. MR 0982339
Reference: [6] A. Bellen: A Runge-Kutta-Nyström method for delay differential equations.In: Numerical Boundary Value ODEs, U. M. Ascher, R. D. Russell (eds.), Birkhäuser, Boston, Basel, Stuttgard, 1985, pp. 271–285. Zbl 0566.65066, MR 0832900
Reference: [7] A. Bellen, M. Zennaro: A collocation method for boundary value problems of differential equations with functional arguments.Computing 32 (1984), 307–318. MR 0748933, 10.1007/BF02243775
Reference: [8] S. R. Bernfeld, V. Lakshmikantham: An Introduction to Nonlinear Boundary Value Problems.Academic Press, New York, London, 1974. MR 0445048
Reference: [9] B. A. Chartres, R. S. Stepleman: Convergence of difference methods for initial and boundary value problems with discontinuous data.Math. Comp. 25 (1971), 729–732. MR 0303739, 10.1090/S0025-5718-1971-0303739-1
Reference: [10] B. A. Chartres, R. S. Stepleman: Convergence of linear multistep methods for differential equations with discontinuities.Numer. Math. 27 (1976), 1–10. MR 0455409, 10.1007/BF01399080
Reference: [11] P. Chocholaty, L. Slahor: A numerical method to boundary value problems for second order delay-differential equations.Numer. Math. 33 (1979), 69–75. MR 0545743, 10.1007/BF01396496
Reference: [12] J. W. Daniel, R. E. Moore: Computation and Theory in Ordinary Differential Equations.W. H. Freeman and Company, San Francisco, 1970. MR 0267765
Reference: [13] L. J. Grimm, K. Schmitt: Boundary value problems for delay-differential equations.Bull. Amer. Math. Soc. 74 (1968), 997–1000. MR 0228785, 10.1090/S0002-9904-1968-12114-7
Reference: [14] L. J. Grimm, K. Schmitt: Boundary value problems for differential equations with deviating arguments.Aequationes Math. 4 (1970), 176–190. MR 0262632, 10.1007/BF01817758
Reference: [15] Z. Jackiewicz, M. Kwapisz: On the convergence of multistep methods for the Cauchy problem for ordinary differential equations.Computing 20 (1978), 351–361. MR 0619909, 10.1007/BF02252383
Reference: [16] T. Jankowski: Convergence of difference methods for boundary value problems of ODE’s with discontinuities.Demonstratio Math. 22 (1989), 51–65. Zbl 0708.65060, MR 1024200, 10.2478/dema-1989-0106
Reference: [17] T. Jankowski: Difference methods for boundary value problems of deviated differential equations with discontinuities.Zeszyty Nauk. Politech. Gdańsk. Mat. 15 (1991), 55–66. Zbl 0744.34066
Reference: [18] V. Lakshmikantham, D. Trigiante: Theory of Difference Equations.Academic Press, Inc., Toronto, 1988. MR 0939611
Reference: [19] K.  de Nevers, K. Schmitt: An application of shooting method to boundary value problems for second order delay equations.J.  Math. Anal. Appl. 36 (1971), 588–597. MR 0298166, 10.1016/0022-247X(71)90041-2
Reference: [20] F. Zh. Sadyrbaev: Solutions of a boundary value problem for a second-order ordinary differential equations.Latv. Mat. Ezhegodnik 31 (1988), 87–90. (Russian) MR 0942118
Reference: [21] S. Saito, M. Yamamoto: Boundary value problems of quasilinear ordinary differential systems on a finite interval.Math. Japon. 34 (1989), 447–458. MR 1003933
Reference: [22] J. Stoer, R. Bulirsch: Introduction to Numerical Analysis.Springer-Verlag, New York-Heidelberg-Berlin, 1993. MR 1295246
Reference: [23] Ya. Virzhbitskii: Necessary and sufficient conditions for the solvability of a two-point boundary value problem.Boundary Value Problems for Ordinary Differential Equations, Latv. Gos. Univ. Riga, 1987, pp. 53–68. (Russian) MR 0901975
.

Files

Files Size Format View
AplMat_47-2002-5_4.pdf 450.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo