Previous |  Up |  Next

Article

Title: Continuation of invariant subspaces via the Recursive Projection Method (English)
Author: Janovský, V.
Author: Liberda, O.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 48
Issue: 4
Year: 2003
Pages: 241-255
Summary lang: English
.
Category: math
.
Summary: The Recursive Projection Method is a technique for continuation of both the steady states and the dominant invariant subspaces. In this paper a modified version of the RPM called projected RPM is proposed. The modification underlines the stabilization effect. In order to improve the poor update of the unstable invariant subspace we have applied subspace iterations preconditioned by Cayley transform. A statement concerning the local convergence of the resulting method is proved. Results of numerical tests are presented. (English)
Keyword: steady states
Keyword: pathfollowing
Keyword: stability exchange
Keyword: unstable invariant subspace
MSC: 47H17
MSC: 47J25
MSC: 65H17
MSC: 65H20
MSC: 65P30
idZBL: Zbl 1099.65046
idMR: MR1994376
DOI: 10.1023/A:1026058514236
.
Date available: 2009-09-22T18:13:53Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134531
.
Reference: [1] E. L.  Allgower. K. Georg: Numerical Continuation Methods.Springer Verlag, New York, 1990. Zbl 0717.65030, MR 1059455
Reference: [2] J.  Bošek, V.  Janovský: A note on the recursive projection method. Proceedings of GAMM96.Z. Angew. Math. Mech. (1977), 437-440.
Reference: [3] B. D.  Davidson: Large-scale continuation and numerical bifurcation for partial differential equations.SIAM J. Numer. Anal. 34 (1997), 2001–2027. Zbl 0894.65023, MR 1472207
Reference: [4] T. J. Garratt, G.  Moore and A.  Spence: A generalised Cayley transform for the numerical detection of Hopf bifurcation points in large systems.Contributions in numerical mathematics, World Sci. Ser. Appl. Anal. (1993), 177–195. MR 1299759
Reference: [5] G. H.  Golub, Ch. F.  van Loan: Matrix Computations.The Johns Hopkins University Press, Baltimore, 1996. MR 1417720
Reference: [6] V.  Janovský, O.  Liberda: Recursive Projection Method for detecting bifurcation points.Proceedings SANM’99, Union of Czech Mathematicians and Physicists, 1999, pp. 121–124.
Reference: [7] V.  Janovský, O. Liberda: Projected version of the Recursive Projection Method algorithm.Proceedings of 3rd Scientific Colloquium, Institute of Chemical Technology, Prague, 2001, pp. 89–100.
Reference: [8] M.  Kubíček, M.  Marek: Computational Methods in Bifurcation Theory and Dissipative Structures.Springer, 1983. MR 0719370
Reference: [9] J.  Kurzweil: Ordinary Differential Equations.Elsevier, 1986. Zbl 0667.34002, MR 0929466
Reference: [10] K.  Lust, D.  Roose: Computation and bifurcation analysis of periodic solutions of large–scale systems.IMA Preprint Series #1536, Feb.  1998, IMA, University of Minnesota. MR 1768366
Reference: [11] G. M.  Shroff, H. B. Keller: Stabilization of unstable procedures: the Recursive Projection Method.SIAM J.  Numer. Anal. 30 (1993), 1099–1120. MR 1231329, 10.1137/0730057
.

Files

Files Size Format View
AplMat_48-2003-4_1.pdf 385.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo