MSC:
35L60,
47J25,
65J15,
65N12 | MR 2025295 | Zbl 1099.65049 | DOI: 10.1023/B:APOM.0000024483.00505.79

Full entry |
PDF
(0.3 MB)
Feedback

References:

[1] A. Harten, J. M. Heyman and P. D. Lax: **On finite-difference approximations and entropy conditions for shocks**. Comm. Pure Appl. Math. 29 (1976), 297–322. DOI 10.1002/cpa.3160290305 | MR 0413526

[2] B. Engquist, St. Osher: **Stable and entropy satisfying approximations for transonic flow calculations**. Math. Comp. 34 (1980), 45–75. DOI 10.1090/S0025-5718-1980-0551290-1 | MR 0551290

[3] R. Ansorge, J. Lei: **The convergence of discretization methods if applied to weakly formulated problems. Theory and applications**. Z. Angew. Math. Mech. 71 (1991), 207–221. DOI 10.1002/zamm.19910710702 | MR 1121485

[4] R. Ansorge: **Convergence of discretizations of nonlinear problems**. Z. Angew. Math. Mech. 73 (1993), 239–253. DOI 10.1002/zamm.19930731002 | MR 1248574 | Zbl 0801.65054

[5] P. Lax, B. Wendroff: **Systems of conservation laws**. Comm. Pure Appl. Math. 13 (1960), 217–237. DOI 10.1002/cpa.3160130205 | MR 0120774

[6] M. G. Crandall, A. Majda: **Monotone difference approximations and entropy conditions for shocks**. Math. Comp. 34 (1980), 1–21. MR 0551288

[7] S. N. Kruzhkov: **Generalized solutions of the Cauchy problem in the large for nonlinear equations of first order**. Soviet Math. Dokl. 10 (1969), 785–788. Zbl 0202.37701

[8] J. Glimm: **Solutions in the large for nonlinear hyperbolic systems of equations**. Comm. Pure Appl. Math. 18 (1965), 95–105. DOI 10.1002/cpa.3160180408 | MR 0194770 | Zbl 0141.28902

[9] D. Kröner: **Numerical Schemes for Conservation Laws**. Wiley-Teubner, Chichester, Stuttgart, 1997. MR 1437144