Previous |  Up |  Next


Navier-Stokes equations; suitable weak solution; generalized energy inequality
We prove that there exists a suitable weak solution of the Navier-Stokes equation, which satisfies the generalized energy inequality for every nonnegative test function. This improves the famous result on existence of a suitable weak solution which satisfies this inequality for smooth nonnegative test functions with compact support in the space-time.
[1] L.  Caffarelli, R.  Kohn and L.  Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), 771–831. DOI 10.1002/cpa.3160350604 | MR 0673830
[2] Y.  Giga, H.  Sohr: Abstract $L^p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1991), 72–94. DOI 10.1016/0022-1236(91)90136-S | MR 1138838
[3] P.  Kučera, Z.  Skalák: Generalized energy inequality for suitable weak solutions of the Navier-Stokes equations. In: Proceedings of seminar Topical Problem of Fluid Mechanics 2003, Institute of Thermomechanics AS CR, J.  Příhoda, K.  Kozel (eds.), Prague, 2003, pp. 61–66.
[4] A.  Kufner, O.  John, S.  Fučík: Function Spaces. Academia, Prague, 1979.
[5] J.  Neustupa, A.  Novotný, P.  Penel: A remark to interior regularity of a suitable weak solution to the Navier-Stokes equations. Preprint, University of Toulon-Var, 1999.
[6] G. A.  Seregin: Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary. J.  Math. Fluid Mech. 4 (2002), 1–29. DOI 10.1007/s00021-002-8533-z | MR 1891072 | Zbl 0997.35044
[7] Z.  Skalák, P.  Kučera: Remark on regularity of weak solutions to the Navier-Stokes equations. Comment. Math. Univ. Carolin. 42 (2001), 111–117. MR 1825376
[8] R.  Temam: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam-New York-Oxford. Revised edition, 1979. MR 0603444 | Zbl 0426.35003
Partner of
EuDML logo