Previous |  Up |  Next

Article

Keywords:
suspension bridges; periodic solution; Galerkin approximation; Leray-Schauder principle
Summary:
We prove the existence of weak T-periodic solutions for a nonlinear mathematical model associated with suspension bridges. Under further assumptions a regularity result is also given.
References:
[1] J. M.  Ball: Initial-boundary value problems for an extensible beam. J.  Math. Anal. Appl. 42 (1973), 61–90. DOI 10.1016/0022-247X(73)90121-2 | MR 0319440 | Zbl 0254.73042
[2] Q. H.  Choi, T.  Jung: On periodic solutions of the nonlinear suspension bridge equation. Differ. Integral Equ. 4 (1991), 383–396. MR 1081189
[3] P. Drábek: Jumping nonlinearities and mathematical models of suspension bridges. Acta Math. et Inf. Univ. Ostraviensis 2 (1994), 9–18. MR 1309060
[4] P.  Drábek, H. Leinfelder, and G. Tajčová: Coupled string-beam equations as a model of suspension bridges. Appl. Math. 44 (1999), 97–142. DOI 10.1023/A:1022257304738 | MR 1667633
[5] N.  Krylová: Periodic solutions of hyperbolic partial differential equation with quadratic dissipative term. Czechoslovak Math. J. 20(95) (1970), 375–405. MR 0283358
[6] A. C.  Lazer, P. J.  McKenna: Large amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32 (1990), 537–578. DOI 10.1137/1032120 | MR 1084570
[7] P. J. McKenna, W.  Walter: Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98 (1987), 167–177. MR 0866720
[8] P. J.  McKenna, W. Walter: Travelling waves in a suspension bridge. SIAM J. Appl. Math. 50 (1990), 703–715. DOI 10.1137/0150041 | MR 1050908
[9] L. Sanchez: Periodic solutions of a nonlinear evolution equation with a linear dissipative term. Rend. Sem. Mat. Univ. Politec. Torino 37 (1980), 183–191. MR 0608937 | Zbl 0459.35009
[10] G.  Tajčová: Mathematical models of suspension bridges. Appl. Math. 42 (1997), 451–480. DOI 10.1023/A:1022255113612 | MR 1475052
[11] E. Zeidler: Nonlinear Functional Analysis and Its Applications, Vol. I–III. Springer-Verlag, New York, 1985–1990.
Partner of
EuDML logo