Previous |  Up |  Next

Article

Title: Two simple derivations of universal bounds for the C.B.S. inequality constant (English)
Author: Axelsson, Owe
Author: Blaheta, Radim
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 1
Year: 2004
Pages: 57-72
Summary lang: English
.
Category: math
.
Summary: Universal bounds for the constant in the strengthened Cauchy-Bunyakowski-Schwarz inequality for piecewise linear-linear and piecewise quadratic-linear finite element spaces in 2 space dimensions are derived. The bounds hold for arbitrary shaped triangles, or equivalently, arbitrary matrix coefficients for both the scalar diffusion problems and the elasticity theory equations. (English)
Keyword: finite element method
Keyword: $h$- and $p$-refinement
Keyword: strengthened Cauchy-Bunyakowski-Schwarz inequality
MSC: 65F10
MSC: 65N22
MSC: 65N30
idZBL: Zbl 1099.65103
idMR: MR2032148
DOI: 10.1023/B:APOM.0000024520.06175.8b
.
Date available: 2009-09-22T18:16:45Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134558
.
Reference: [1] B.  Achchab, O.  Axelsson, L.  Laayouni and A. Souissi: Strengthened Cauchy-Bunyakowski-Schwarz inequality for a three dimensional elasticity system.Numer. Linear Algebra Appl. 8 (2001), 191–205. MR 1817796, 10.1002/1099-1506(200104/05)8:3<191::AID-NLA229>3.0.CO;2-7
Reference: [2] B.  Achchab, J.  Maitre: Estimate of the constant in two strengthened C.B.S.  inequalities for F.E.M.  systems of 2D  elasticity. Applications to multilevel methods and a posteriori error estimators.Numer. Linear Algebra Appl. 3 (1996), 147–159. MR 1379558, 10.1002/(SICI)1099-1506(199603/04)3:2<147::AID-NLA75>3.0.CO;2-S
Reference: [3] O.  Axelsson: On multigrid methods of the two-level type.In: Multigrid Methods, Lecture Notes in Math.  960, W.  Hackbusch, U.  Trottenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 352–367. Zbl 0505.65040, MR 0685778
Reference: [4] O.  Axelsson: Stabilization of algebraic multilevel iteration methods; additive methods.Numer. Algorithms 21 (1999), 23–47. Zbl 0937.65135, MR 1725714, 10.1023/A:1019136808500
Reference: [5] O.  Axelsson, V. A. Barker: Finite Element Solution of Boundary Value Problems. Theory and Computation.Academic Press, Orlando, 1984, reprinted as SIAM Classics in Applied Mathematics 35, SIAM, Philadelphia, 2001. MR 0758437
Reference: [6] O. Axelsson, I. Gustafsson: Preconditioning and two-level multigrid methods of arbitrary degree of approximation [Report 8120 (July 1981), Department of Mathematics, University of Nijmegen, The Netherlands].Math. Comp. 40 (1983), 219–242. MR 0679442
Reference: [7] O. Axelsson, A. Padiy: On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems.SIAM J. Sci. Comput. 20 (1999), 1807–1830. MR 1694685, 10.1137/S1064827597320058
Reference: [8] R. Blaheta: Adaptive composite grid methods for problems of plasticity.Math. Comput. Simulation 50 (1999), 123–134. MR 1717646, 10.1016/S0378-4754(99)00064-6
Reference: [9] R.  Blaheta: Nested tetrahedral grids and strengthened C.B.S. inequality.Numer. Linear Algebra Appl. 10 (2003), 619–637. Zbl 1071.65164, MR 2030627, 10.1002/nla.340
Reference: [10] M. Jung, J. F.  Maitre: Some remarks on the constant in the strengthened C.B.S. inequality: estimate for hierarchic finite element discretization of elasticity problems.Numer. Methods Partial Differential Equations 15 (1999), 469–488. MR 1695748, 10.1002/(SICI)1098-2426(199907)15:4<469::AID-NUM4>3.0.CO;2-B
Reference: [11] J. F.  Maitre, F.  Musy: The contraction number of a class of two-level methods, an exact evaluation for some finite element subspaces and model problems.In: Multigrid Methods, Lecture Notes in Math. 960, W. Hackbusch, U. Trottenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 535–544. MR 0685787
Reference: [12] J.  Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [13] S. D. Margenov: Upper bound on the constant in the strengthened C.B.S. inequality for FEM 2D elasticity equations.Numer. Linear Algebra Appl. 1 (1994), 65–74. MR 1269944, 10.1002/nla.1680010107
.

Files

Files Size Format View
AplMat_49-2004-1_3.pdf 1.833Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo