Previous |  Up |  Next

Article

Title: Linear versus quadratic estimators in linearized models (English)
Author: Kubáček, Lubomír
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 2
Year: 2004
Pages: 81-95
Summary lang: English
.
Category: math
.
Summary: In nonlinear regression models an approximate value of an unknown parameter is frequently at our disposal. Then the linearization of the model is used and a linear estimate of the parameter can be calculated. Some criteria how to recognize whether a linearization is possible are developed. In the case that they are not satisfied, it is necessary to take into account either some quadratic corrections or to use the nonlinear least squares method. The aim of the paper is to find some criteria for an ordering linear and quadratic estimators. (English)
Keyword: nonlinear regression model
Keyword: linearization
Keyword: quadratization
MSC: 62F10
MSC: 62J02
MSC: 62J05
idZBL: Zbl 1099.62523
idMR: MR2043075
DOI: 10.1023/B:APOM.0000027217.32120.89
.
Date available: 2009-09-22T18:17:00Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134560
.
Reference: [1] D. M.  Bates, D. G.  Watts: Relative curvature measures of nonlinearity.J.  Roy. Statist. Soc. Ser.  B 42 (1980), 1–25. MR 0567196
Reference: [2] J. P.  Imhof: Computing the distribution of quadratic forms in normal variables.Biometrika 48 (1961), 419–426. Zbl 0136.41103, MR 0137199, 10.1093/biomet/48.3-4.419
Reference: [3] A.  Jenčová: A comparison of linearization and quadratization domains.Appl. Math. 42 (1997), 279–291. MR 1453933, 10.1023/A:1023064412279
Reference: [4] L.  Kubáček: On a linearization of regression models.Appl. Math. 40 (1995), 61–78. MR 1305650
Reference: [5] L.  Kubáček, L.  Kubáčková, J.  Volaufová: Statistical Models with Linear Structures.Veda, Bratislava, 1995.
Reference: [6] L.  Kubáček: Models with a low nonlinearity.Tatra Mt. Math. Publ. 7 (1996), 149–155. MR 1408464
Reference: [7] L.  Kubáček: Quadratic regression models.Math. Slovaca 46 (1996), 111–126. MR 1414414
Reference: [8] L.  Kubáček: Corrections of estimators in linearized models.Acta Univ. Palack. Olomuc., Fac. Rerum Math. 37 (1998), 69–80. MR 1690475
Reference: [9] L. Kubáček, L.  Kubáčková: Regression models with a weak nonlinearity. Technical Reports.(1998), University of Stuttgart, 1–64.
Reference: [10] P. B.  Patnaik: The non-central $\chi ^2$ and $F$-distributions and their applications.Biometrika 36 (1949), 202–232. MR 0034564
Reference: [11] A.  Pázman: Nonlinear Statistical Models.Kluwer Academic Publishers, DordrechtBoston-London and Ister Science Press, Bratislava, 1993. MR 1254661
Reference: [12] R.  Potocký, To Van Ban: Confidence regions in nonlinear regression models.Appl. Math. 37 (1992), 29–39. MR 1152155
Reference: [13] F. E. Satterthwaite: An approximate distribution of estimates of variance components.Biometrics Bulletin 2 (1946), 110-114. 10.2307/3002019
Reference: [14] E.  Tesaříková, L. Kubáček: How to deal with regression models with a weak nonlinearity.Discuss. Math. Probab. Stat. 21 (2001), 21–48. MR 1868926, 10.7151/dmps.1018
Reference: [15] B. L.  Welch: The generalization of Student’s problem when several different population variances are involved.Biometrika 34 (1947), 28–35. Zbl 0029.40802, MR 0019277
.

Files

Files Size Format View
AplMat_49-2004-2_1.pdf 1.858Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo