Previous |  Up |  Next

Article

Title: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity (English)
Author: Penel, Patrick
Author: Pokorný, Milan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 49
Issue: 5
Year: 2004
Pages: 483-493
Summary lang: English
.
Category: math
.
Summary: We study the nonstationary Navier-Stokes equations in the entire three-dimensional space and give some criteria on certain components of gradient of the velocity which ensure its global-in-time smoothness. (English)
Keyword: Navier-Stokes equations
Keyword: regularity of systems of PDE’s
MSC: 35B65
MSC: 35Q30
MSC: 35Q35
MSC: 76D03
MSC: 76D05
idZBL: Zbl 1099.35101
idMR: MR2086090
DOI: 10.1023/B:APOM.0000048124.64244.7e
.
Date available: 2009-09-22T18:19:29Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134580
.
Reference: [1] L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations.Comm. Pure Appl. Math. 35 (1982), 771–831. MR 0673830, 10.1002/cpa.3160350604
Reference: [2] D.  Chae, H. J. Choe: Regularity of solutions to the Navier-Stokes equation.Electron. J.  Differential Equations 5 (1999), 1–7. MR 1673067
Reference: [3] C. L.  Berselli, G. P. Galdi: Regularity criterion involving the pressure for weak solutions to the Navier-Stokes equations.Dipartimento di Matematica Applicata, Università di Pisa, Preprint No.  2001/10. MR 1920038
Reference: [4] L.  Escauriaza, G. Seregin, V. Šverák: On backward uniqueness for parabolic equations.Zap. Nauch. Seminarov POMI 288 (2002), 100–103. MR 1923546
Reference: [5] E. Hopf: Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen.Math. Nachrichten 4 (1951), 213–231. MR 0050423
Reference: [6] K. K.  Kiselev, O. A. Ladyzhenskaya: On existence and uniqueness of solutions of the solutions to the Navier-Stokes equations.Izv. Akad. Nauk SSSR 21 (1957), 655–680. (Russian) MR 0100448
Reference: [7] J.  Leray: Sur le mouvement d’un liquide visqueux emplissant l’espace.Acta Math. 63 (1934), 193–248. MR 1555394, 10.1007/BF02547354
Reference: [8] J.  Neustupa, J. Nečas: New conditions for local regularity of a suitable weak solution to the Navier-Stokes equations.J.  Math. Fluid Mech. 4 (2002), 237–256. MR 1932862, 10.1007/s00021-002-8544-9
Reference: [9] J.  Neustupa, A. Novotný, P. Penel: A remark to interior regularity of a suitable weak solution to the Navier-Stokes equations.CIM Preprint No.  25 (1999).
Reference: [10] J.  Neustupa, P. Penel: Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D  Navier-Stokes Equations.In: Mathematical Fluid Mechanics (Recent Results and Open Problems), J. Neustupa, P. Penel (eds.), Birkhäuser-Verlag, Basel, 2001, pp. 237–268. MR 1865056
Reference: [11] L.  Nirenberg: On elliptic partial differential equations.Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 123 13 (1959), 115–162. Zbl 0088.07601, MR 0109940
Reference: [12] M.  Pokorný: On the result of He concerning the smoothness of solutions to the Navier-Stokes equations.Electron. J. Differential Equations (2003), 1–8. Zbl 1014.35073, MR 1958046
Reference: [13] V.  Scheffer: Hausdorff measure and the Navier-Stokes equations.Comm. Math. Phys. 55 (1977), 97–112. Zbl 0357.35071, MR 0510154, 10.1007/BF01626512
Reference: [14] G.  Seregin, V. Šverák: Navier-Stokes with lower bounds on the pressure.Arch. Ration. Mech. Anal. 163 (2002), 65–86. MR 1905137, 10.1007/s002050200199
Reference: [15] G.  Seregin, V. Šverák: Navier-Stokes and backward uniqueness for the heat equation.IMA Preprint No.  1852 (2002). MR 1972005
Reference: [16] J.  Serrin: The initial boundary value problem for the Navier-Stokes equations.In: Nonlinear Problems, R. E. Langer (ed.), University of Wisconsin Press, 1963.
Reference: [17] E. M.  Stein: Singular Integrals and Differentiability Properties of Functions.Princeton University Press, Princeton, 1970. Zbl 0207.13501, MR 0290095
Reference: [18] Y. Zhou: A new regularity result for the Navier-Stokes equations in terms of the gradient of one velocity component.Methods and Applications in Analysis (to appear).
.

Files

Files Size Format View
AplMat_49-2004-5_6.pdf 1.994Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo