Previous |  Up |  Next


Title: Fluid-dynamic equations for reacting gas mixtures (English)
Author: Bisi, Marzia
Author: Groppi, Maria
Author: Spiga, Giampiero
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 1
Year: 2005
Pages: 43-62
Summary lang: English
Category: math
Summary: Starting from the Grad 13-moment equations for a bimolecular chemical reaction, Navier-Stokes-type equations are derived by asymptotic procedure in the limit of small mean paths. Two physical situations of slow and fast reactions, with their different hydrodynamic variables and conservation equations, are considered separately, yielding different limiting results. (English)
Keyword: kinetic theory
Keyword: chemical reaction
Keyword: Chapman-Enskog expansion
MSC: 76P05
MSC: 76V05
MSC: 80A32
MSC: 82C40
MSC: 92E20
idZBL: Zbl 1099.82015
idMR: MR2117695
DOI: 10.1007/s10492-005-0003-5
Date available: 2009-09-22T18:20:26Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] C.  Cercignani: Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations.Cambridge University Press, Cambridge, 2000. Zbl 0961.76002, MR 1744523
Reference: [2] V.  Giovangigli: Multicomponent Flow Modeling.Birkhäuser-Verlag, Boston, 1999. Zbl 0956.76003, MR 1713516
Reference: [3] M. N.  Kogan: Rarefied Gas Dynamics.Plenum Press, New York, 1969.
Reference: [4] C.  Cercignani: The Boltzmann Equation and its Applications.Springer-Verlag, New York, 1988. Zbl 0646.76001, MR 1313028
Reference: [5] J. H.  Ferziger, H. G.  Kaper: Mathematical Theory of Transport Processes in Gases.North Holland, Amsterdam, 1972.
Reference: [6] S.  Takata, K.  Aoki: The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the Boltzmann equation.Transport Theory Statist. Phys. 30 (2001), 205–237. MR 1848595
Reference: [7] S.  Chapman, T. G.  Cowling: The Mathematical Theory of Non-Uniform Gases.Cambridge University Press, Cambridge, 1970. MR 0258399
Reference: [8] Y.  Sone: Kinetic Theory and Fluid Dynamics.Birkhäuser-Verlag, Boston, 2002. Zbl 1021.76002, MR 1919070
Reference: [9] A.  Rossani, G.  Spiga: A note on the kinetic theory of chemically reacting gases.Physica  A 272 (1999), 563–573. MR 1730976, 10.1016/S0378-4371(99)00336-2
Reference: [10] M.  Groppi, G.  Spiga: Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas.J.  Math. Chem. 26 (1999), 197–219. 10.1023/A:1019194113816
Reference: [11] I.  Müller, T.  Ruggeri: Extended Thermodynamics.Springer-Verlag, New York, 1993. MR 1269783
Reference: [12] M.  Bisi, M.  Groppi, G.  Spiga: Grad’s distribution functions in the kinetic equations for a chemical reaction.Contin. Mech. Thermodyn. 14 (2002), 207–222. MR 1896837, 10.1007/s001610100066
Reference: [13] : Handbook of Mathematical Functions.M.  Abramowitz, I. A.  Stegun (eds.), Dover, New York, 1965.
Reference: [14] M.  Bisi: Kinetic equations for non-conservative interactions.PhD. Thesis, Università di Milano, 2004, in press.
Reference: [15] I.  Samohýl: Comparison of classical and rational thermodynamics of reacting fluid mixtures with linear transport properties.Collection Czechoslov. Chem. Commun. 40 (1975), 3421–3435. 10.1135/cccc19753421


Files Size Format View
AplMat_50-2005-1_3.pdf 347.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo