Previous |  Up |  Next

Article

Title: Input-output systems in Biology and Chemistry and a class of mathematical models describing them (English)
Author: Bohl, Erich
Author: Marek, Ivo
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 3
Year: 2005
Pages: 219-245
Summary lang: English
.
Category: math
.
Summary: Our aim is to show a class of mathematical models in application to some problems of cell biology. Typically, our models are described via classical chemical networks. This property is visualized by a conservation law. Mathematically, this conservation law guarantees most of the mathematical properties of the models such as global existence and uniqueness of solutions as well as positivity of the solutions for positive data. These properties are consequences of the fact that the infinitesimal generators forming the underlying dynamical systems are (nonlinear) negative $M$-operators. (English)
Keyword: dynamical system
Keyword: input-output system
Keyword: chemical network
Keyword: boundary layer
MSC: 34A30
MSC: 34A34
MSC: 34C14
MSC: 47B65
MSC: 47N20
MSC: 92C45
idZBL: Zbl 1099.34006
idMR: MR2133728
DOI: 10.1007/s10492-005-0015-1
.
Date available: 2009-09-22T18:22:06Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134604
.
Reference: [1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson: Molecular Biology of the Cell.Garland Publishing, New York-London, 1989.
Reference: [2] A. Berman, M. Neumann, R. J. Stern: Nonnegative Matrices in Dynamic Systems.J.  Wiley, New York, 1989. MR 1019319
Reference: [3] A. Berman, R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences.Academic Press, New York-San Francisco-London, 1979. MR 0544666
Reference: [4] E. Bohl: A boundary layer phenomenon for linear systems with a rank deficient matrix.Z. Angew. Math. Mech. 7/8 (1991), 223–231. Zbl 0792.65057, MR 1121486
Reference: [5] E. Bohl: Constructing amplification via chemical circuits.In: Biomedical Modeling Simulation, J. Eisarfeld, D. S. Leonis, M. Witken (eds.), Elsevier Science Publ., Amsterdam, 1992, pp. 331–334.
Reference: [6] E. Bohl: Structural amplification in chemical networks.In: Complexity, Chaos and Biological Evolution, E. Mosekilde, L. Mosekilde (eds.), Plenum Press, New York, 1991, pp. 119–128.
Reference: [7] E. Bohl, W. Boos: Quantitative analysis of binding protein-mediated ABC transport systems.J.  Theor. Biology 186 (1997), 65–74. 10.1006/jtbi.1996.0342
Reference: [8] E. Bohl, W. Boos: Binding protein-dependent transporters: An answer of mathematics to biology.J.  Comput. Appl. Math. 63 (1995), 11–25. MR 1365548, 10.1016/0377-0427(95)00055-0
Reference: [9] E. Bohl, P. Lancaster: Perturbation of spectral inverses applied to a boundary layer phenomenon arising in chemical networks.Linear Algebra Appl. 180 (1993), 35–59. MR 1206409, 10.1016/0024-3795(93)90524-R
Reference: [10] E. Bohl, I. Marek: A model of amplification.J.  Comput. Appl. Math. 63 (1995), 27–47. MR 1365549, 10.1016/0377-0427(95)00052-6
Reference: [11] E. Bohl, I.  Marek: A nonlinear model involving $M$-operators. An amplification effect measured in the cascade of vision.J.  Comput. Appl. Math. 60 (1995), 13–28. MR 1354645, 10.1016/0377-0427(94)00081-B
Reference: [12] E.  Bohl, I. Marek: A stability theorem for a class of linear evolution systems.Integral Equations Oper. Theory 34 (1999), 251–269. MR 1689389, 10.1007/BF01300579
Reference: [13] E. Bohl, I. Marek: Existence and uniqueness results for nonlinear cooperative systems.Oper. Theory, Adv. Appl. 130 (2002), 153–170. MR 1902006
Reference: [14] E. Bohl, H. A. Shuman, W. Boos: A mathematical treatment of the kinetics of binding protein-dependent transport systems reveals that both loaded and the unloaded binding proteins iteract with the membrane components.Theoret. Biol. 172 (1995), 83–94. 10.1006/jtbi.1995.0006
Reference: [15] W. Boos, J. M. Lucht: Periplasmic binding-protein-dependent ABC transporters.In: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, H. E.  Umbarger (eds.), American Society of Microbiology, Washington, DC, 1996, pp. 1175–1209.
Reference: [16] A. Cornish-Bowden: Fundamentals of Enzyme Kinetics.Portland Press, London, 1995.
Reference: [17] I.  Hendekovic: Konstanz University PhD. Thesis, to be completed in 2005..
Reference: [18] E. Hille, R. S. Phillips: Functional Analysis and Semi-groups.Amer. Math. Soc. Coll. Publ. Vol. XXXI, third printing of Revised Edition, Providence, 1974. MR 0423094
Reference: [19] J. Keener, J. Sneyd: Mathematical Physiology.Springer-Verlag, New York, 1998. MR 1673204
Reference: [20] M. G. Krein, M. A.  Rutman: Linear operators leaving invariant a cone in a Banach space.Uspekhi mat. nauk III (1948), 3–95 (Russian). MR 0027128
Reference: [21] J. R. Manson, W. Boos, P. J. Bassfort, B. A. Rasmussen: Dependence of maltose and chemotaxis on the amount of maltose-binding protein.J.  Biol. Chem. 260 (1985), 9727–9733.
Reference: [22] I. Marek: Schwarz-like methods for approximate solving cooperative systems.Kybernetika 40 (2004), 611–624. Zbl 1151.65341, MR 2121000
Reference: [23] I. Marek, D. Szyld: Pseudoirreducible and pseudoprimitive operators.Linear Algebra Appl. 154–156 (1991), 779–791. MR 1113169
Reference: [24] I. Marek, K. Žitný: Analytic Theory of Matrices for Applied Sciences, Vol.  1. Teubner Texte zur Mathematik, Band  60., Leipzig, 1983. MR 0731071
Reference: [25] G. Merino, W. Boos, H. A. Shuman, E. Bohl: The inhibition of maltose transport by unliganded form of the maltose-binding protein of Escherichia coli: Experimental findings and mathematical treatment.J.  Theor. Biology 177 (1995), 171–179. 10.1006/jtbi.1995.0236
Reference: [26] L. Michaelis, M. L. Menten: Die Kinetic der Invertierung.Biochem. Z. 49 (1913), 333–369.
Reference: [27] J. Monod, J. Wyman, J. P. Changeux: On the nature of allosteric transitions. A plausible model.J.  Mol. Biol. 12 (1965), 88–118. 10.1016/S0022-2836(65)80285-6
Reference: [28] I. Sawashima: On spectral properties of some positive operators.Natur. Sci. Rep. Ochanomizu Univ. 15 (1964), 53–64. Zbl 0138.07801, MR 0187096
Reference: [29] H. H. Schaefer: Banach Lattices and Positive Operators.Springer-Verlag, Berlin-Heidelberg-New York, 1974. Zbl 0296.47023, MR 0423039
Reference: [30] H. H. Schaefer: Topological Vector Spaces.Springer Verlag, New York-Heidelberg-Berlin, 1971. Zbl 0217.16002, MR 0342978
Reference: [31] H. Schneider, M. Vidysagar: Cross-positive matrices.SIAM J. Numer. Anal. 7 (1970), 508–519. MR 0277550, 10.1137/0707041
Reference: [32] S. Szmelcman, M. Schwartz, T. J. Silhavy, W. Boos: Maltose transport in Escherichia coli  K12. A comparison of transport kinetics in wild and $\lambda $-resistant mutants with the dissociation constant of the maltose-binding protein as measured by fluorescence quenching.Eur. J.  Biochem. 65 (1976), 13–19. 10.1111/j.1432-1033.1976.tb10383.x
Reference: [33] A. E. Taylor, D. C. Lay: Introduction to Functional Analysis, second edition.J.  Wiley, New York, 1980. MR 0564653
Reference: [34] C. Tralau: Das Upg-Transportsystem in Escherichia coli: Mathematische Modellierung und experimentelle Befunde.Berichte aus der Biologie, Shaker Verlag, Aachen, 2003, Dissertation der Universität Konstanz.
Reference: [35] C. Tralau, G. Greller, M. Pajatsch, W. Boos, E. Bohl: Mathematical treatment of transport data of bacterial transport systems to estimate limitation in diffusion through the outer membrane.J.  Theor. Biol. 207 (2000), 1–14. 10.1006/jtbi.2000.2140
Reference: [36] A. B. Vasil’eva: Asymptotic behaviour of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives.Russ. Math. Surv. 18 (1963), 13–84. MR 0158137, 10.1070/RM1963v018n03ABEH001137
.

Files

Files Size Format View
AplMat_50-2005-3_5.pdf 424.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo