Previous |  Up |  Next


Cauchy-Bunyakowski-Schwarz inequality; multilevel preconditioning; elliptic partial differential equation
We estimate the constant in the strengthened Cauchy-Bunyakowski-Schwarz inequality for hierarchical bilinear finite element spaces and elliptic partial differential equations with coefficients corresponding to anisotropy (orthotropy). It is shown that there is a nontrivial universal estimate, which does not depend on anisotropy. Moreover, this estimate is sharp and the same as for hierarchical linear finite element spaces.
[1] O. Axelsson: A survey of algebraic multilevel iteration (AMLI) methods. BIT Numerical Mathematics 43 (2003), 863–879. DOI 10.1023/B:BITN.0000014564.49281.13 | MR 2058872 | Zbl 1049.65139
[2] O.  Axelsson, R. Blaheta: Two simple derivations of universal bounds for the C.B.S.  inequality constant. Applications of Mathematics (to appear). MR 2032148
[3] R. Blaheta: GPCG-generalized preconditioned CD  method and its use with non-linear and non-symmetric displacement decomposition preconditioners. Numer. Linear Algebra Appl. 9 (2002), 527–550. DOI 10.1002/nla.295 | MR 1934875
[4] O.  Axelsson, V. A. Barker: Finite element solution of boundary value problems: Theory and computations. Classics in Appl. Math, SIAM, Philadelphia, 2001. MR 1856818
[5] J. F.  Maitre, F. Mussy: The contraction number of a class of twolevel methods, an exact evaluation for some finite element subspaces and model problem. In: Multigrid Methods, Lecture Notes in Math. 960, W.  Hackbusch, U.  Trottenberg (eds.), Springer-Verlag, Berlin, 1982, pp. 535–544.
Partner of
EuDML logo