Title:
|
What is the smallest possible constant in Céa's lemma? (English) |
Author:
|
Chen, Wei |
Author:
|
Křížek, Michal |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
129-144 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider finite element approximations of a second order elliptic problem on a bounded polytopic domain in $\mathbb{R}^d$ with $d\in \lbrace 1,2,3,\ldots \rbrace $. The constant $C\ge 1$ appearing in Céa’s lemma and coming from its standard proof can be very large when the coefficients of an elliptic operator attain considerably different values. We restrict ourselves to regular families of uniform partitions and linear simplicial elements. Using a lower bound of the interpolation error and the supercloseness between the finite element solution and the Lagrange interpolant of the exact solution, we show that the ratio between discretization and interpolation errors is equal to $1+\mathcal O(h)$ as the discretization parameter $h$ tends to zero. Numerical results in one and two-dimensional case illustrating this phenomenon are presented. (English) |
Keyword:
|
supercloseness |
Keyword:
|
Lagrange finite elements |
Keyword:
|
Lagrange remainder |
Keyword:
|
lower estimates |
Keyword:
|
elliptic problems |
Keyword:
|
$d$-simplex |
Keyword:
|
uniform partitions |
MSC:
|
35J25 |
MSC:
|
65N15 |
MSC:
|
65N30 |
idZBL:
|
Zbl 1164.65495 |
idMR:
|
MR2212310 |
DOI:
|
10.1007/s10492-006-0009-7 |
. |
Date available:
|
2009-09-22T18:25:17Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134634 |
. |
Reference:
|
[1] I. Babuška, A. K. Aziz: Survey lectures on the mathematical foundations of the finite element method.Math. Found. Finite Elem. Method Appl. Part. Differ. Equations, A. K. Aziz (ed.), Academic Press, New York, 1972, pp. 1–359. MR 0421106 |
Reference:
|
[2] I. Babuška, T. Strouboulis, C. S. Upadhyay, and S. K. Gangaray: Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in the finite element solutions of Laplace’s, Poisson’s, and elasticity equations.Numer. Methods Partial Differ. Equations 12 (1996), 347–392. MR 1388445, 10.1002/num.1690120303 |
Reference:
|
[3] J. Brandts, M. Křížek: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489–505. MR 1987941, 10.1093/imanum/23.3.489 |
Reference:
|
[4] J. Brandts, M. Křížek: Superconvergence of tetrahedral quadratic finite elements.J. Comput. Math. 23 (2005), 27–36. MR 2124141 |
Reference:
|
[5] J. Céa: Approximation variationnelle des problèmes aux limites.Ann. Inst. Fourier 14 (1964), 345–444. MR 0174846, 10.5802/aif.181 |
Reference:
|
[6] P. Clément: Approximation by finite element functions using local regularization.RAIRO Anal. Numér. 9 (1975), 77–84. MR 0400739 |
Reference:
|
[7] C. M. Chen: Optimal points of stresses for tetrahedron linear element.Natur. Sci. J. Xiangtan Univ. 3 (1980), 16–24. (Chinese) |
Reference:
|
[8] L. Chen: Superconvergence of tetrahedral linear finite elements.Internat. J. Numer. Anal. Model. 3 (2006), 273–282. MR 2237882 |
Reference:
|
[9] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174 |
Reference:
|
[10] G. Goodsell, J. R. Whiteman: Pointwise superconvergence of recovered gradients for piecewise linear finite element approximations to problems of planar linear elasticity.Numer. Methods Partial Differ. Equations 6 (1990), 59–74. MR 1034433, 10.1002/num.1690060105 |
Reference:
|
[11] I. Hlaváček, M. Křížek: On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition.Apl. Mat. 32 (1987), 131–154. MR 0885758 |
Reference:
|
[12] V. Kantchev, R. Lazarov: Superconvergence of the gradient of linear finite elements for 3D Poisson equation.In: Proc. Int. Symp. Optimal Algorithms, B. Sendov (ed.), Bulgarian Acad. Sci., Sofia, 1986, pp. 172–182. |
Reference:
|
[13] M. Křížek, P. Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263, 10.1007/BF00047538 |
Reference:
|
[14] M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 50.Longman Scientific & Technical, Harlow, 1990. MR 1066462 |
Reference:
|
[15] M. Křížek, P. Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications.Kluwer Academic Publishers, Dordrecht, 1996. MR 1431889 |
Reference:
|
[16] H. W. Kuhn: Some combinatorial lemmas in topology.IBM J. Res. Develop. 4 (1960), 518–524. Zbl 0109.15603, MR 0124038, 10.1147/rd.45.0518 |
Reference:
|
[17] B. Li: Lagrange interpolation and finite element superconvergence.Numer. Methods Partial Differ. Equations 20 (2004), 33–59. Zbl 1042.65092, MR 2020249, 10.1002/num.10078 |
Reference:
|
[18] Q. Lin, N. N. Yan: The Construction and Analysis for Efficient Finite Elements.Hebei Univ. Publ. House, , 1996. (Chinese) |
Reference:
|
[19] L. A. Oganesjan, L. A. Ruhovec: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary.Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. (Russian) MR 0295599 |
Reference:
|
[20] P. Tong: Exact solutions of certain problems by finite-element method.AIAA J. 7 (1969), 178–180. 10.2514/3.5067 |
Reference:
|
[21] L. B. Wahlbin: Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Math. Vol. 1605.Springer-Verlag, Berlin, 1995. MR 1439050 |
Reference:
|
[22] J. Xu, L. Zikatanov: Some observations on Babuška and Brezzi theories.Numer. Math. 94 (2003), 195–202. MR 1971217, 10.1007/s002110100308 |
Reference:
|
[23] Q. D. Zhu: The derivative good points for the finite element method with 2-degree triangular element.Nat. Sci. J. Xiangtan Univ. 1 (1981), 36–44. (Chinese) |
. |