Previous |  Up |  Next

Article

Title: Partition of unity method for Helmholtz equation: $q$-convergence for plane-wave and wave-band local bases (English)
Author: Strouboulis, Theofanis
Author: Hidajat, Realino
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 2
Year: 2006
Pages: 181-204
Summary lang: English
.
Category: math
.
Summary: In this paper we study the $q$-version of the Partition of Unity Method for the Helmholtz equation. The method is obtained by employing the standard bilinear finite element basis on a mesh of quadrilaterals discretizing the domain as the Partition of Unity used to paste together local bases of special wave-functions employed at the mesh vertices. The main topic of the paper is the comparison of the performance of the method for two choices of local basis functions, namely a) plane-waves, and b) wave-bands. We establish the $q$-convergence of the method for the class of analytical solutions, with $q$ denoting the number of plane-waves or wave-bands employed at each vertex, for which we get better than exponential convergence for sufficiently small $h$, the mesh-size of the employed mesh. We also discuss the a-posteriori estimation for any solution quantity of interest and the problem of quadrature for all integrals employed. The goal of the paper is to stimulate theoretical development which could explain various numerical features. A main open question is the analysis of the pollution and its disappearance as function of $h$ and $q$. (English)
Keyword: Partition of Unity Method (PUM)
Keyword: Helmholtz equation
Keyword: exponential convergence
Keyword: extrapolation
Keyword: pollution due to wave-number
MSC: 35J05
MSC: 65J10
MSC: 65N12
MSC: 65N30
MSC: 65Y20
idZBL: Zbl 1164.65505
idMR: MR2212312
DOI: 10.1007/s10492-006-0011-0
.
Date available: 2009-09-22T18:25:30Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134636
.
Reference: [1] I.  Babuška, G.  Caloz, and J. E.  Osborn: Special finite element methods for a class of second order elliptic problems with rough coefficients.SIAM J. Numer. Anal. 31 (1994), 945–981. MR 1286212, 10.1137/0731051
Reference: [2] J. M.  Melenk, I.  Babuška: Approximation with harmonic and generalized harmonic polynomials in the partition of unity method.Comput. Assist. Mech. Eng. Sci. 4 (1997), 607–632.
Reference: [3] J. M.  Melenk, I.  Babuška: The partition of unity finite element method: Basic theory and applications.Comput. Methods Appl. Mech. Eng. 139 (1996), 289–314. MR 1426012, 10.1016/S0045-7825(96)01087-0
Reference: [4] I.  Babuška, J. M.  Melenk: The partition of unity method.Int. J. Numer. Methods. Eng. 40 (1997), 727–758. MR 1429534
Reference: [5] J. M.  Melenk: On generalized finite element methods.PhD. thesis, University of Maryland, 1995.
Reference: [6] I.  Babuška, T.  Strouboulis, and K.  Copps: The design and analysis of the generalized finite element method.Comput. Methods Appl. Mech. Eng. 181 (2000), 43–69. MR 1734667, 10.1016/S0045-7825(99)00072-9
Reference: [7] T.  Strouboulis, I.  Babuška, and K.  Copps: The generalized finite element method: An example of its implementation and illustration of its performance.Int. J.  Numer. Methods Eng. 47 (2000), 1401–1417. MR 1746489, 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
Reference: [8] T.  Strouboulis, K.  Copps, and I.  Babuška: The generalized finite element method.Comput. Methods Appl. Mech. Eng. 190 (2001), 4081–4193. MR 1832655, 10.1016/S0045-7825(01)00188-8
Reference: [9] T.  Strouboulis, L.  Zhang, and I.  Babuška: Generalized finite element method using mesh-based handbooks: Application to problem in domains with many voids.Comput. Methods Appl. Mech. Eng. 192 (2003), 3109–3161. MR 2007029, 10.1016/S0045-7825(03)00347-5
Reference: [10] T.  Strouboulis, L.  Zhang, and I.  Babuška: $p$-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems.Int. J.  Numer. Methods Eng. 60 (2004), 1639–1672. MR 2069141, 10.1002/nme.1017
Reference: [11] N.  Sukumar, D. L.  Chopp, N.  Moës, and T.  Belytschko: Modeling holes and inclusions by level sets in the extended finite element method.Comput. Methods Appl. Mech. Eng. 190 (2001), 6183–6200. MR 1857695, 10.1016/S0045-7825(01)00215-8
Reference: [12] O.  Laghrouche, P.  Bettess: Solving short wave problems using special finite elements—towards an adaptive approach.In: The Mathematics of Finite Elements and Applications X, J. R. Whiteman (ed.), Elsevier, Amsterdam, 1999, pp. 181–194. MR 1801975
Reference: [13] P.  Bettess, J.  Shirron, O.  Laghrouche, B.  Peseux, R.  Sugimoto, and J.  Trevelyan: A numerical integration scheme for special finite elements for the Helmholtz equation.Int. J.  Numer. Methods Eng. 56 (2003), 531–552. MR 1965603, 10.1002/nme.575
Reference: [14] R.  Sugimoto, P.  Bettess, and J.  Trevelyan: A numerical integration scheme for special quadrilateral finite elements for the Helmholtz equation.Commun. Numer. Methods Eng. 19 (2003), 233–245. MR 1965603, 10.1002/cnm.584
Reference: [15] E.  Perrey-Debain, O.  Laghrouche, P.  Bettess, and J.  Trevelyan: Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering.Philos. Trans. R. Soc. Lond.  A 362 (2004), 561–577. MR 2075907, 10.1098/rsta.2003.1335
Reference: [16] O.  Laghrouche, P.  Bettess, E.  Perrey-Debain, and J.  Trevelyan: Wave interpolation finite elements for Helmholtz problems with jumps in the wave speed.Comput. Methods Appl. Mech. Eng. 194 (2005), 367–381. MR 2105168, 10.1016/j.cma.2003.12.074
Reference: [17] P.  Ortiz, E.  Sanchez: An improved partition of unity finite element model for diffraction problems.Int. J.  Numer. Methods Eng. 50 (2001), 2727–2740. 10.1002/nme.161
Reference: [18] P.  Ortiz: Finite elements using a plane-wave basis for scattering of surface water waves.Philos. Trans. R.  Soc. Lond . A 362 (2004), 525–540. Zbl 1083.76045, MR 2075905, 10.1098/rsta.2003.1333
Reference: [19] C.  Farhat, I.  Harari, and L. P.  Franca: The discontinuous enrichment method.Comput. Methods Appl. Mech. Eng. 190 (2001), 6455–6479. MR 1870426, 10.1016/S0045-7825(01)00232-8
Reference: [20] C.  Farhat, I.  Harari, and U.  Hetmaniuk: A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime.Comput. Methods Appl. Mech. Eng. 192 (2003), 1389–1419. MR 1963058, 10.1016/S0045-7825(02)00646-1
Reference: [21] P.  Rouch, P.  Ladevèze: The variational theory of complex rays: A predictive tool for medium-frequency vibrations.Comput. Methods Appl. Mech. Eng. 192 (2003), 3301–3315. 10.1016/S0045-7825(03)00352-9
Reference: [22] H.  Riou, P.  Ladevèze, and P.  Rouch: Extension of the variational theory of complex rays to shells for medium-freqency vibrations.J.  Sound Vib. 272 (2004), 341–360. 10.1016/S0022-460X(03)00775-2
Reference: [23] P.  Ladevèze, H.  Riou: Calculation of medium-frequency vibrations over a wide frequency range.Comput. Methods Appl. Mech. Eng. 194 (2005), 3167–3191. MR 2142539, 10.1016/j.cma.2004.08.009
Reference: [24] I.  Babuška, F.  Ihlenburg, T.  Strouboulis, and S. K.  Gangaraj: A posteriori error estimation for finite element solutions of Helmholtz’ equation. Part  I: The quality of local indicators and estimators.Int. J.  Numer. Methods Eng. 40 (1997), 3443–3462. MR 1471617, 10.1002/(SICI)1097-0207(19970930)40:18<3443::AID-NME221>3.0.CO;2-1
Reference: [25] I.  Babuška, F.  Ihlenburg, T.  Strouboulis, and S. K.  Gangaraj: A posteriori error estimation for finite element solutions of Helmholtz’ equation. Part  II: Estimation of the pollution error.Int. J.  Numer. Methods Eng. 40 (1997), 3883–3900. MR 1475346, 10.1002/(SICI)1097-0207(19971115)40:21<3883::AID-NME231>3.0.CO;2-V
Reference: [26] F. Ihlenburg: Finite Element Analysis of Acoustic Scattering.Springer-Verlag, New York, 1998. Zbl 0908.65091, MR 1639879
Reference: [27] I.  Babuška, S.  Sauter: .Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J.  Numer. Anal. 34 (1997), 2392–2423. MR 1480387, 10.1137/S0036142994269186
Reference: [28] T.  Strouboulis, I.  Babuška, and R.  Hidajat: The generalized finite element method for Helmholtz equation: theory, computation, and open problems.Comput. Methods Appl. Mech. Eng., Accepted for publication. MR 2240576
Reference: [29] P. J.  Davis, P. Rabinowitz: Methods of Numerical Integration.Academic Press, San Diego, 1984. MR 0760629
Reference: [30] D. S.  Jones: Acoustic and Electromagnetic Waves.Oxford University Press, New York, 1986. MR 0943347
Reference: [31] B.  A.  Szabó, I.  Babuška: Finite Element Analysis.John Wiley & Sons, New York, 1991. MR 1164869
Reference: [32] T.  Strouboulis, L.  Zhang, D.  Wang, and I.  Babuška: A posteriori error estimation for generalized finite element methods.Comput. Methods Appl. Mech. Eng. 195 (2006), 852–879. MR 2195292, 10.1016/j.cma.2005.03.004
.

Files

Files Size Format View
AplMat_51-2006-2_5.pdf 1.214Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo