Previous |  Up |  Next


Title: On discontinuous Galerkin method and semiregular family of triangulations (English)
Author: Prachař, Aleš
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 51
Issue: 6
Year: 2006
Pages: 605-618
Summary lang: English
Category: math
Summary: Discretization of second order elliptic partial differential equations by discontinuous Galerkin method often results in numerical schemes with penalties. In this paper we analyze these penalized schemes in the context of quite general triangular meshes satisfying only a semiregularity assumption. A new (modified) penalty term is presented and theoretical properties are proven together with illustrative numerical results. (English)
Keyword: discontinuous Galerkin method
Keyword: elliptic equations
Keyword: penalty method
Keyword: semiregular family of triangulations
MSC: 35J25
MSC: 65N12
MSC: 65N15
MSC: 65N30
idZBL: Zbl 1164.65499
idMR: MR2291785
DOI: 10.1007/s10492-006-0024-8
Date available: 2009-09-22T18:27:43Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] T.  Apel: Anisotropic Finite Elements: Local Estimates and Applications.Teubner-Verlag, Stuttgart-Leipzig, 1999. Zbl 0934.65121, MR 1716824
Reference: [2] D. N. Arnold: An interior penalty finite element method with discontinuous elements.SIAM J.  Numer. Anal. 19 (1982), 742–760. Zbl 0482.65060, MR 0664882, 10.1137/0719052
Reference: [3] D.  Arnold, F.  Brezzi, B.  Cockburn, and D.  Marini: Unified analysis of discontinuous Galerkin methods for elliptic problems.SIAM J.  Numer. Anal. 39 (2002), 1749–1779. MR 1885715, 10.1137/S0036142901384162
Reference: [4] P.  Ciarlet: The Finite Element Method for Elliptic Problems.North Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [5] M.  Křížek: On semiregular families of triangulations and linear interpolation.Appl. Math. 36 (1991), 223–232. MR 1109126
Reference: [6] B.  Rivière, M. F.  Wheeler, and V.  Girault: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part  I.Comput. Geosci. 3 (1999), 337–360. MR 1750076, 10.1023/A:1011591328604
Reference: [7] Ch.  Schwab: $p$- and $hp$-Finite Elements Methods.Clarendon Press, Oxford, 1998. MR 1695813
Reference: [8] M. F.  Wheeler: An elliptic collocation-finite element method with interior penalties.SIAM J.  Numer. Anal. 15 (1978), 152–161. Zbl 0384.65058, MR 0471383, 10.1137/0715010
Reference: [9] V.  Jarník: Differential Calculus  II.Academia, Prague, 1978. (Czech)


Files Size Format View
AplMat_51-2006-6_5.pdf 354.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo