Title:
|
Regularity results for a class of obstacle problems (English) |
Author:
|
Eleuteri, Michela |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
52 |
Issue:
|
2 |
Year:
|
2007 |
Pages:
|
137-170 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove some optimal regularity results for minimizers of the integral functional $\int f(x,u,Du)\mathrm{d}x$ belonging to the class $ K:=\lbrace u \in W^{1,p}(\Omega )\: u\ge \psi \rbrace $, where $\psi $ is a fixed function, under standard growth conditions of $p$-type, i.e. \[ L^{-1}|z|^p \le f(x,s,z) \le L(1+|z|^p). \] (English) |
Keyword:
|
regularity results |
Keyword:
|
local minimizers |
Keyword:
|
integral functionals |
Keyword:
|
obstacle problems |
Keyword:
|
standard growth conditions |
MSC:
|
35J85 |
MSC:
|
49J40 |
MSC:
|
49N60 |
idZBL:
|
Zbl 1164.49009 |
idMR:
|
MR2305870 |
DOI:
|
10.1007/s10492-007-0007-4 |
. |
Date available:
|
2009-09-22T18:28:57Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134668 |
. |
Reference:
|
[1] E. Acerbi, G. Mingione: Regularity results for a class of functionals with nonstandard growth.Arch. Ration. Mech. Anal. 156 (2001), 121–140. MR 1814973, 10.1007/s002050100117 |
Reference:
|
[2] H. J. Choe: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems.Arch. Ration. Mech. Anal. 114 (1991), 383–394. Zbl 0733.35024, MR 1100802, 10.1007/BF00376141 |
Reference:
|
[3] A. Coscia, G. Mingione: Hölder continuity of the gradient of $p(x)$-harmonic mappings.C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 363–368. MR 1675954, 10.1016/S0764-4442(99)80226-2 |
Reference:
|
[4] G. Cupini, N. Fusco, and R. Petti: Hölder continuity of local minimizers.J. Math. Anal. Appl. 235 (1999), 578–597. MR 1703712, 10.1006/jmaa.1999.6410 |
Reference:
|
[5] G. Cupini, A. P. Migliorini: Hölder continuity for local minimizers of a nonconvex variational problem.J. Convex Anal. 10 (2003), 389–408. MR 2043864 |
Reference:
|
[6] G. Cupini, R. Petti: Morrey spaces and local regularity of minimizers of variational integrals.Rend. Mat. Appl., VII. Ser. 21 (2001), 121–141. MR 1884939 |
Reference:
|
[7] I. Ekeland: Nonconvex minimization problems.Bull. Am. Math. Soc. 3 (1979), 443–474. Zbl 0441.49011, MR 0526967, 10.1090/S0273-0979-1979-14595-6 |
Reference:
|
[8] M. Eleuteri: Hölder continuity results for a class of functionals with non standard growth.Boll. Unione Mat. Ital. 8, 7-B (2004), 129–157. Zbl 1178.49045, MR 2044264 |
Reference:
|
[9] L. Esposito, F. Leonetti, and G. Mingione: Regularity results for minimizers of irregular integrals with $(p,q)$ growth.Forum Math. 14 (2002), 245–272. MR 1880913, 10.1515/form.2002.011 |
Reference:
|
[10] V. Ferone, N. Fusco: Continuity properties of minimizers of integral functionals in a limit case.J. Math. Anal. Appl. 202 (1996), 27–52. MR 1402586, 10.1006/jmaa.1996.0301 |
Reference:
|
[11] I. Fonseca, N. Fusco: Regularity results for anisotropic image segmentation models.Ann. Sc. Norm. Super. Pisa 24 (1997), 463–499. MR 1612389 |
Reference:
|
[12] I. Fonseca, N. Fusco, and P. Marcellini: An existence result for a nonconvex variational problem via regularity.ESAIM, Control Optim. Calc. Var. 7 (2002), 69–95. MR 1925022, 10.1051/cocv:2002004 |
Reference:
|
[13] N. Fusco, J. Hutchinson: $C^{1,\alpha }$ partial regularity of functions minimising quasiconvex integrals.Manuscr. Math. 54 (1985), 121–143. MR 0808684, 10.1007/BF01171703 |
Reference:
|
[14] M. Giaquinta, E. Giusti: Quasi-minima.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984), 79–107. MR 0778969, 10.1016/S0294-1449(16)30429-2 |
Reference:
|
[15] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, Berlin, 1977. MR 0473443 |
Reference:
|
[16] E. Giusti: Direct Methods in the Calculus of Variations.World Scientific, Singapore, 2003. Zbl 1028.49001, MR 1962933 |
Reference:
|
[17] J. J. Manfredi: Regularity for minima of functionals with $p$-growth.J. Differ. Equations 76 (1988), 203–212. Zbl 0674.35008, MR 0969420, 10.1016/0022-0396(88)90070-8 |
. |