Previous |  Up |  Next

Article

Keywords:
homogenization; $G$-convergence; two-scale convergence
Summary:
We characterize some $G$-limits using two-scale techniques and investigate a method to detect deviations from the arithmetic mean in the obtained $G$-limit provided no periodicity assumptions are involved. We also prove some results on the properties of generalized two-scale convergence.
References:
[1] G.  Allaire, M.  Briane: Multiscale convergence and reiterated homogenization. Proc. R.  Soc. Edinb., Sect.  A 126 (1996), 297–342. MR 1386865
[2] G.  Allaire: Homogenization and two-scale convergence. SIAM J.  Math. Anal. 23 (1992), 1482–1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[3] G.  Allaire: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences  146. Springer-Verlag, New York, 2002. DOI 10.1007/978-1-4684-9286-6 | MR 1859696
[4] H. W.  Alt: Lineare Funktionalanalysis. Springer-Verlag, Berlin, 1985. Zbl 0577.46001
[5] A.  Bensoussan, J. -L. Lions, G.  Papanicolau: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications. North-Holland, Amsterdam-New York-Oxford, 1978. MR 0503330
[6] J.  Casado-Diaz, I.  Gayte: A general compactness result and its application to the two-scale convergence of almost periodic functions. C. R. Math. Acad. Sci. Paris, Ser.  1 323 (1996), 329–334. MR 1408763
[7] D.  Cioranescu, A.  Damlamian, and G. Griso: Periodic unfolding and homogenization. C.  R. Math. Acad. Sci. Paris, Ser. 1 335 (2002), 99–104. DOI 10.1016/S1631-073X(02)02429-9 | MR 1921004
[8] D.  Cioranescu, P.  Donato: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford, 1999. MR 1765047
[9] V.  Chiadò Piat, A.  Defranceschi: Homogenization of monotone operators. Nonlinear Anal., Theory Methods Appl. 14 (1990), 717–732. DOI 10.1016/0362-546X(90)90102-M | MR 1049117
[10] V.  Chiadò Piat, G.  Dal Maso, and A.  Defranceschi: $G$-convergence of monotone operators. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 123–160. MR 1065871
[11] L. C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS  Regional Conference Series in Mathematics, Vol.  74. 1990. MR 1034481
[12] A.  Holmbom, J.  Silfver, N.  Svanstedt, and N.  Wellander: On two-scale convergence and related sequential compactness topics. Appl. Math. 51 (2006), 247–262. DOI 10.1007/s10492-006-0014-x | MR 2228665
[13] D.  Lukkassen, G.  Nguetseng, and P.  Wall: Two-scale convergence. Int. J.  Pure Appl. Math. 2 (2002), 35–86. MR 1912819
[14] M. L.  Mascarenhas, A.-M.  Toader: Scale convergence in homogenization. Numer. Funct. Anal. Optimization. 22 (2001), 127–158. DOI 10.1081/NFA-100103791 | MR 1841866
[15] F.  Murat: $H$-convergence. Séminarie d’Analyse Fonctionnelle et Numérique, 1977–1978, Université d’Alger, Alger, 1978.
[16] F.  Murat: Compacité par compensation. Ann. Sc. Norm. Super. Pisa Cl. Sci., IV.  Ser. 5 (1978), 489–507. MR 0506997 | Zbl 0399.46022
[17] F.  Murat: Compacité par compensation  II. In: Proc. Int. Meet. “Recent Methods in Nonlinear Analysis”, Pitagora, Bologna, , , 1979, pp. 245–256. MR 0533170 | Zbl 0427.35008
[18] L.  Nechvátal: Alternative approaches to the two-scale convergence. Appl. Math. 49 (2004), 97–110. DOI 10.1023/B:APOM.0000027218.04167.9b | MR 2043076 | Zbl 1099.35012
[19] G.  Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM J.  Math. Anal. 20 (1989), 608–623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[20] G. Nguetseng: Homogenization structures and applications I. Z.  Anal. Anwend. 22 (2003), 73–107. MR 1962077 | Zbl 1045.46031
[21] J.  Silfver: Sequential convergence for functions and operators. Licentiate Thesis  10, Mid Sweden University, Östersund, 2004.
[22] S. Spagnolo: Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore. Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat, III.  Ser. 21 (1967), 657–699. (Italian) MR 0225015 | Zbl 0153.42103
[23] S. Spagnolo: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sculoa Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 571–597. (Italian) MR 0240443
[24] S.  Spagnolo: Convergence in energy for elliptic operators. In: Proc. 3rd Symp. Numer. Solut. Partial Differ. Equat., College Park, 1975, Academic Press, San Diego, 1976, pp. 469–498. MR 0477444 | Zbl 0347.65034
[25] L. Tartar: Homogénéisation et compacité par compensation. Cours Peccot, Collège de France, Paris, March 1977. Unpublished, partly written in [15].
[26] L.  Tartar: Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics, Heriott-Watt Symposium. Res. Notes Math.  39, Vol.  4, R. J. Knops (ed.), Pitman, Boston-London, 1979, pp. 136–212. MR 0584398 | Zbl 0437.35004
[27] V. V. Zhikov, S. M.  Kozlov, O. A.  Oleinik: Homogenization of Differential Operators and Variational Problems. Springer-Verlag, Berlin, 1994. MR 1329546
Partner of
EuDML logo