Previous |  Up |  Next

Article

Title: On some kinds of fuzzy connected spaces (English)
Author: Hassan, Qutaiba Ead
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 4
Year: 2007
Pages: 353-361
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce new results in fuzzy connected spaces. Among the results obtained we can mention the good extension of local connectedness. Also we prove that in a $T_{1}$-fuzzy compact space the notions c-zero dimensional, strong c-zero dimensional and totally ${\mathrm c}_i$-disconnected are equivalent. (English)
Keyword: fuzzy connected space
Keyword: fuzzy strong connected
Keyword: fuzzy super connected
Keyword: $c$-zero dimensional
Keyword: strong $c$-zero dimensional
Keyword: totally $c_i$-disconnected
MSC: 03E72
MSC: 54A40
idZBL: Zbl 1164.54312
idMR: MR2324733
DOI: 10.1007/s10492-007-0020-7
.
Date available: 2009-09-22T18:30:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134681
.
Reference: [1] N.  Ajmal, J. K. Kohli: Zero dimensional and strongly zero dimensional fuzzy topological spaces.Fuzzy Sets Syst. 61 (1994), 231–237. MR 1262473
Reference: [2] N.  Ajmal, J. K. Kohli: Connectedness and local connectedness in fuzzy topological spaces and Heyting-algebra-valued sets.Fuzzy Sets Syst. 44 (1991), 93–108. MR 1133986
Reference: [3] D. M.  Ali, A. K.  Srivastava: On fuzzy connectedness.Fuzzy Sets Syst. 28 (1988), 203–208. MR 0968073
Reference: [4] C. L.  Chang: Fuzzy topological spaces.J.  Math. Anal. Appl. 24 (1968), 182–190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7
Reference: [5] E.  Cuchillo-Ibañez, J.  Tarrés: On zero dimensionality in fuzzy topological spaces.Fuzzy Sets Syst. 82 (1996), 361–367. MR 1409708
Reference: [6] A. K.  Chaudhuri, P.  Das: Fuzzy connected sets in fuzzy topological spaces.Fuzzy Sets Syst. 49 (1992), 223–229. MR 1179749
Reference: [7] U. V.  Fatteh, D. S.  Bassam: Fuzzy connectedness and its stronger forms.J.  Math. Anal. Appl. 111 (1985), 449–464. MR 0813222, 10.1016/0022-247X(85)90229-X
Reference: [8] R.  Lowen: Connectedness in fuzzy topological spaces.Rocky Mt. J. Math. 11 (1981), 427–433. Zbl 0487.54007, MR 0722576, 10.1216/RMJ-1981-11-3-427
Reference: [9] P.-M.  Pu and Y.-M. Liu: Fuzzy topology. I.  Neighborhood structure of a fuzzy point and Moore-Smith convergence.J. Math. Anal. Appl. 76 (1980), 571–599. MR 0587361, 10.1016/0022-247X(80)90048-7
Reference: [10] N.  Turanli, D.  Coker: On fuzzy types of fuzzy connectedness in fuzzy topological spaces.Fuzzy Sets Syst. 60 (1993), 97–102. MR 1254583
Reference: [11] L. A.  Zadeh: Fuzzy sets.Inf. Control 8 (1965), 338–353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [12] X.  Zhao: Connectedness on fuzzy topological spaces.Fuzzy Sets Syst. 20 (1986), 223–240. Zbl 0615.54008, MR 0858443
Reference: [13] C.-Y.  Zheng: Fuzzy path and fuzzy connectedness.Fuzzy Sets Syst. 14 (1984), 273–280. Zbl 0555.54005, MR 0768113, 10.1016/0165-0114(84)90087-3
.

Files

Files Size Format View
AplMat_52-2007-4_6.pdf 293.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo