Previous |  Up |  Next


Title: Optimal shape design in a fibre orientation model (English)
Author: Stebel, Jan
Author: Mäkinen, Raino A. E.
Author: Toivanen, Jukka I.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 5
Year: 2007
Pages: 391-405
Summary lang: English
Category: math
Summary: We study a 2D model of the orientation distribution of fibres in a paper machine headbox. The goal is to control the orientation of fibres at the outlet by shape variations. The mathematical formulation leads to an optimization problem with control in coefficients of a linear convection-diffusion equation as the state problem. Existence of solutions both to the state and the optimization problem is analyzed and sensitivity analysis is performed. Further, discretization is done and a numerical example is shown. (English)
Keyword: fibre suspension flow
Keyword: convection-diffusion equation
Keyword: optimal control
Keyword: sensitivity analysis
Keyword: finite element method
Keyword: automatic differentiation
MSC: 35J55
MSC: 49Q10
MSC: 49Q12
MSC: 76M10
idZBL: Zbl 1164.35353
idMR: MR2342596
DOI: 10.1007/s10492-007-0022-5
Date available: 2009-09-22T18:30:43Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] R.  Byrd, J. C.  Gilbert, and J.  Nocedal: A trust region method based on interior point techniques for nonlinear programming.Math. Program.  A 89 (2000), 149–185. MR 1795061, 10.1007/PL00011391
Reference: [2] J. W.  Demmel, S. C.  Eisenstat, J. R.  Gilbert, X. S.  Li, and J. W. H.  Liu: A supernodal approach to sparse partial pivoting.SIAM J.  Matrix Anal. Appl. 20 (1999), 720–755. MR 1685050, 10.1137/S0895479895291765
Reference: [3] D.  Gilbarg, N. S.  Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, Berlin, 2001. MR 1814364
Reference: [4] A.  Griewank: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.SIAM, Philadelphia, 2000. Zbl 0958.65028, MR 1753583
Reference: [5] J.  Hämäläinen: Mathematical Modelling and Simulation of Fluid Flows in Headbox of Paper Machines.University of Jyväskylä, Jyväskyä, 1993. MR 1218394
Reference: [6] J.  Hämäläinen, R. A. E.  Mäkinen, and P.  Tarvainen: Optimal design of paper machine headboxes.Int. J.  Numer. Methods Fluids 34 (2000), 685–700. 10.1002/1097-0363(20001230)34:8<685::AID-FLD75>3.0.CO;2-O
Reference: [7] J.  Haslinger, R. A.  E.  Mäkinen: Introduction to Shape Optimization: Theory, Approximation, and Computation.SIAM, Philadelphia, 2003. MR 1969772
Reference: [8] J.  Haslinger, J.  Málek, and J.  Stebel: Shape optimization in problems governed by generalised Navier-Stokes Equations: Existence analysis.Control Cybern. 34 (2005), 283–303. MR 2211072
Reference: [9] M.  Křížek, P.  Neittaanmäki: Finite Element Approximation of Variational Problems and Applications.Longman Academic, Scientific & Technical, Harlow, 1990. MR 1066462
Reference: [10] O. A.  Ladyzhenskaya, N. N.  Ural’tseva: Linear and Quasilinear Elliptic Equations.Academic Press, New York-London, 1968.
Reference: [11] R.  A.  E.  Mäkinen, J.  Hämäläinen: Optimal control of a turbulent fibre suspension flowing in a planar contraction.Commun. Numer. Meth. Eng.; Published Online: 13  Dec  2005, DOI: 10.1002/cnm.833. MR 2235029, 10.1002/cnm.833
Reference: [12] A.  Olson, I.  Frigaard, C.  Chan, and J. P.  Hämäläinen: Modelling a turbulent fibre suspension flowing in a planar contraction: The one-dimensional headbox.Int. J. Multiphase Flow 30 (2004), 51–66. 10.1016/j.ijmultiphaseflow.2003.10.006


Files Size Format View
AplMat_52-2007-5_2.pdf 354.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo