Previous |  Up |  Next


von Kármán plate; unilateral dynamic contact; singular memory; existence of solutions
The solvability of the contact problem is proved provided the plate is simply supported. The singular memory material is assumed. This makes it possible to get a priori estimates important for the strong convergence of gradients of velocities of solutions to the penalized problem.
[1] I. Bock, J. Jarušek: Unilateral dynamic contact of viscoelastic von Kármán plates. Adv. Math. Sci. Appl. 16 (2006), 175–187. MR 2253231
[2] I. Bock, J. Lovíšek: On unilaterally supported viscoelastic von Kármán plates with a long memory. Math. Comput. Simul. 61 (2003), 399–407. DOI 10.1016/S0378-4754(02)00095-2 | MR 1984140
[3] I. Bock, J. Lovíšek: On a contact problem for a viscoelastic von Kármán plate and its semidiscretization. Appl. Math. 50 (2005), 203–217. DOI 10.1007/s10492-005-0014-2 | MR 2133727
[4] P. G. Ciarlet, P. Rabier: Les équations de von Kármán. Springer-Verlag, Berlin, 1980. MR 0595326
[5] C. Eck, J. Jarušek, and M. Krbec: Unilateral contact problems. Variational Methods and Existence Theorems. Pure and Applied Mathematics No.  270, Chapman & Hall/CRC, Boca Raton-London-New York-Singapore, 2005. MR 2128865
[6] J. Jarušek: Solvability of unilateral hyperbolic problems involving viscoelasticity via penalization. Proc. of “Conference EQUAM”, Varenna 1992 (R.  Salvi, ed.). SAACM 3 (1993), 129–140.
[7] J. Jarušek: Solvability of the variational inequality for a drum with a memory vibrating in the presence of an obstacle. Boll. Unione Mat. Ital. VII. Ser., A 8 (1994), 113–122. MR 1273193
[8] J. Jarušek, J. V. Outrata: On sharp optimality conditions in control of contact problems with strings. Nonlinear Anal. 67 (2007), 1117–1128. DOI 10.1016/ | MR 2325366
[9] H. Koch, A. Stahel: Global existence of classical solutions to the dynamic von Kármán equations. Math. Methods Appl. Sci. 16 (1993), 581–586. DOI 10.1002/mma.1670160806 | MR 1233041
[10] J. E. Muñoz Rivera, G. Perla Menzala: Decay rates of solutions to a von Kármán system for viscoelastic plates with memory. Q.  Appl. Math. 57 (1999), 181–200. DOI 10.1090/qam/1672191 | MR 1672191
[11] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Masson/Academia, Paris/Praha, 1967. MR 0227584
[12] A. Oukit, R. Pierre: Mixed finite element for the linear plate problem: the Hermann-Miyoshi model revisited. Numer. Math. 74 (1996), 453–477. DOI 10.1007/s002110050225 | MR 1414418
Partner of
EuDML logo